Benutzer:Peter Hager/Baustelle/Zufall: Unterschied zwischen den Versionen
(→NN) |
(→Wahrscheinlichkeit) |
||
Zeile 290: | Zeile 290: | ||
'''fe <!-- erg (zT) ok -->''' | '''fe <!-- erg (zT) ok -->''' | ||
− | ''<u>https://de.wikipedia.org/wiki/Wahrscheinlichkeit </u>'' | + | ''<u>https://de.wikipedia.org/wiki/Wahrscheinlichkeit </u>'' <s></s> <!-- --> |
Die Wahrscheinlichkeit ist ein allgemeines Maß der Erwartung für ein unsicheres Ereignis.[1] Auf der einen Seite sollen Vorhersagen (Prognosen) über den Ausgang zukünftiger Ereignisse gemacht werden.[2] Auf der anderen Seite soll aber auch bei bereits eingetretenen Ereignissen beurteilt werden, wie gewöhnlich oder ungewöhnlich sie sind.[3] In der Mathematik hat sich mit der Wahrscheinlichkeitstheorie ein eigenes Fachgebiet entwickelt.[4] Es hat mit Versuchen bei Glücksspielen begonnen und ist heute in so gut wie allen Lebensbereichen anzutreffen.[5] | Die Wahrscheinlichkeit ist ein allgemeines Maß der Erwartung für ein unsicheres Ereignis.[1] Auf der einen Seite sollen Vorhersagen (Prognosen) über den Ausgang zukünftiger Ereignisse gemacht werden.[2] Auf der anderen Seite soll aber auch bei bereits eingetretenen Ereignissen beurteilt werden, wie gewöhnlich oder ungewöhnlich sie sind.[3] In der Mathematik hat sich mit der Wahrscheinlichkeitstheorie ein eigenes Fachgebiet entwickelt.[4] Es hat mit Versuchen bei Glücksspielen begonnen und ist heute in so gut wie allen Lebensbereichen anzutreffen.[5] | ||
Die klassische Wahrscheinlichkeit nach Laplace dafür, dass bei einem Zufallsexperiment ein bestimmtes Ereignis eintritt, ist das Zahlenverhältnis (Quotient) der Anzahl der günstigen Ergebnisse zur Anzahl der überhaupt möglichen Ergebnisse.[6] Hierin unterscheidet sich die Wahrscheinlichkeit von der Chance, die als Quotient aus der Anzahl der günstigen zur Anzahl der ungünstigen Ergebnisse definiert ist.[7] | Die klassische Wahrscheinlichkeit nach Laplace dafür, dass bei einem Zufallsexperiment ein bestimmtes Ereignis eintritt, ist das Zahlenverhältnis (Quotient) der Anzahl der günstigen Ergebnisse zur Anzahl der überhaupt möglichen Ergebnisse.[6] Hierin unterscheidet sich die Wahrscheinlichkeit von der Chance, die als Quotient aus der Anzahl der günstigen zur Anzahl der ungünstigen Ergebnisse definiert ist.[7] | ||
+ | ''<u>http://www.statistics4u.com/fundstat_germ/cc_prob_intro_toc.html Wahrscheinlichkeitstheorie </u>'' | ||
+ | ;Was ist Wahrscheinlichkeit? | ||
− | ''<u> </u>'' | + | Der Begriff "Wahrscheinlichkeit" hat im alltäglichen Gebrauch verschiedene Bedeutungen . Die Wahrscheinlichkeit kann ein Maß dafür sein, mit welcher Erwartung ein bestimmtes Ereignis, z.B. einen Sechser zu würfeln, den Jackpot zu gewinnen, einen Autounfall zu haben oder einen Meteoriteneinschlag auf der Erde zu erleben, eintritt. Wahrscheinlichkeit kann auch als persönliches Maß der Ungewissheit interpretiert werden: die Möglichkeit, jemanden Bekannten zu treffen oder in den Ferien nach Rom zu fahren. Wir benutzen Wahrscheinlichkeit auch, um das Risiko einer Entscheidung oder Investition abzuwägen. |
+ | |||
+ | ''<u>https://wirtschaftslexikon.gabler.de/definition/wahrscheinlichkeit-50718 </u>'' | ||
+ | einem Ereignis A (z.B. Eintreten eines Versicherungsfalles) zugeordnete Zahl zwischen 0 und 1, die mit P(A) bezeichnet wird und die Chance des Eintretens dieses Ereignisses quantifiziert. Das Rechnen mit Wahrscheinlichkeiten erfolgt im Rahmen der Axiome der Wahrscheinlichkeitsrechnung (Kolmogorov-Axiome, Additionssätze, Multiplikationssätze der Wahrscheinlichkeit); die numerische Festlegung von Wahrscheinlichkeiten geschieht nach den Regeln der Wahrscheinlichkeitsrechnung. | ||
''<u> </u>'' | ''<u> </u>'' |
Version vom 23. Juli 2024, 16:19 Uhr
Seite aus Benutzer:Peter Hager/Baustelle/Diverse Hinweise# Statistik (31.1.2024) lö
Diese Seite ist noch in Arbeit
nn vollständig, in Arbeit, Kurzinfo!
Diese Seite stellt die für die Unternehmensbewertung wichtigen Aspekte des Themas dar, erhebt aber keinen Anspruch auf Vollständigkeit.
nn verlinkt, (fehlende Links eintragen), kein Link auf diese Seite
* Seite auf Termini eintragen
- Seite auf Benutzer:Peter Hager/Baustelle/Stichwörter löschen
- Abkürzung und Formeln eintragen
- Weiterleitung: <!-- #WEITERLEITUNG [[ ]] --> Wenn ein Link auf ein Unterkapitel verweist, dort einfügen: <!-- Bei Änderung Überschrift in [[NN]], [[MM]] ändern. -->
Inhaltsverzeichnis
Begriff (lö)
- Weiterleitung:
(zT) ok
https://de.wikipedia.org/wiki/Zufall
https://wirtschaftslexikon.gabler.de/definition/zufall-48866 blödsinn kein Verweis
eigene Von Zufall spricht man, wenn für ein einzelnes Ereignis oder das Zusammentreffen mehrerer Ereignisse keine kausale Erklärung gefunden werden kann. Als kausale Erklärungen für Ereignisse kommen je nach Kontext eher Absichten handelnder Personen oder auch naturwissenschaftliche deterministische Abläufe in Frage.[1]
siehe auch-> Statistik, Kausalität (Recht)
Bedeutung
- Weiterleitung:
Hauptartikel-> [[]]
- Synonyme: [[]]
siehe auch-> [[]]
fe
eigene
Ermittlung / Berechnung
einen löschen
fe
eigene
Berechnung[12]
NN[13]
Benutzer:Peter_Hager/Praktische_Hilfen#Mathematik
läVariable | |
= | Ergebnis |
Variable |
Excel
- NN lässt sich in Excel mit der Funktion
VAR.P()ermitteln.[14]
Zufallsexperiment
- Weiterleitung: Zufallsexperiment
Hauptartikel-> [[]]
- Synonyme: [[]]
siehe auch-> [[]]
fe
https://de.wikipedia.org/wiki/Zufallsexperiment In der Wahrscheinlichkeitstheorie bezeichnet ein Zufallsexperiment (auch Zufallsvorgang oder Zufallsversuch genannt) einen Versuch, der unter genau festgelegten Versuchsbedingungen durchgeführt wird und einen zufälligen Ausgang hat. Als Versuch versteht man hier einen Vorgang, bei dem mehrere Ergebnisse eintreten können, und bei dem ein nicht vorhersagbares, erfassbares Ergebnis eintritt, zum Beispiel das Werfen einer Münze oder eines Spielwürfels. Davon zu unterscheiden ist das randomisierte Experiment.
Obwohl das Ergebnis jedes einzelnen Versuchs zufällig ist, lassen sich, sofern eine hinreichend häufige Wiederholung möglich ist, Gesetzmäßigkeiten erkennen, die mathematisch erfasst werden können. Die interessierenden Größen eines Zufallsexperiments nennt man Zufallsvariablen.
eigene
Literatur
Weblinks
- [
NN bei Wikipedia], abgefragt 23.7.2024;
- [
NN bei Gablers Wirtschaftslexikon], abgefragt 23.7.2024;
- [
NN bei Bundeszentrale für politische Bildung], abgefragt 23.7.2024;
- [
NN bei Grundlagen Statistik], abgefragt 23.7.2024;
Zufallsvariable
- Weiterleitung: Zufallsvariable
Hauptartikel-> [[]]
- Synonyme: [[]]
siehe auch-> [[]]
fe
https://de.wikipedia.org/wiki/Zufallsvariable In der Stochastik ist eine Zufallsvariable (auch zufällige Variable[1], zufällige Größe[2], zufällige Veränderliche[1], zufälliges Element[1], Zufallselement[3], Zufallsveränderliche[4][5]) eine Größe, deren Wert vom Zufall abhängig ist.[6] Formal ist eine Zufallsvariable eine Funktion, die jedem möglichen Ergebnis eines Zufallsexperiments eine Größe zuordnet.[2] Ist diese Größe eine reelle Zahl, so spricht man von einer reellen Zufallsvariablen oder Zufallsgröße[1]. Beispiele für reelle Zufallsvariablen sind die Augensumme von zwei geworfenen Würfeln und die Gewinnhöhe in einem Glücksspiel. Zufallsvariablen können aber auch komplexere mathematische Objekte sein, wie Zufallsfelder, Zufallsbewegungen, Zufallspermutationen oder Zufallsgraphen. Über verschiedene Zuordnungsvorschriften können einem Zufallsexperiment auch verschiedene Zufallsvariablen zugeordnet werden.[2]
Den einzelnen Wert, den eine Zufallsvariable bei der Durchführung eines Zufallsexperiments annimmt, nennt man Realisierung[7] oder im Falle eines stochastischen Prozesses einen Pfad. Bei der Zufallszahlenerzeugung werden Realisierungen spezieller Zufallsexperimente als Zufallszahlen bezeichnet.
Während A. N. Kolmogorow zunächst von durch den Zufall bestimmten Größen sprach[8][9], führte er 1933 den Begriff zufällige Größe ein[10] und sprach später von Zufallsgrößen.[11] Im Jahr 1933 ist auch schon der Begriff Zufallsvariable in Gebrauch.[12] Bereits 1935 ist der Begriff zufällige Variable nachweisbar.[13] Später hat sich (ausgehend vom englischen random variable, das sich gegen chance variable und stochastic Variable durchsetzte[14]) der etwas irreführende Begriff[15] Zufallsvariable durchgesetzt.
https://wirtschaftslexikon.gabler.de/definition/zufallsvariable-51013 in der Statistik eine Größe, die ihre Werte (Realisationen) mit bestimmten Wahrscheinlichkeiten annimmt bzw. die mit gewissen Wahrscheinlichkeiten Werte in Intervallen annimmt. Im letzteren Fall kann die mathematische Beschreibung der Wahrscheinlichkeiten über Wahrscheinlichkeitsdichten (Dichtefunktionen) erfolgen. Aus einem Zufallsvorgang entsteht eine Zufallsvariable bspw. dadurch, dass jedem Ergebnis des Zufallsvorganges eine reelle Zahl zugeordnet wird (z.B. Anzahl der Augen beim zweifachen Würfelwurf, Summe der täglichen Verkäufe eines Produkts in einer Woche).
a) Eine diskrete Zufallsvariable ist dadurch gekennzeichnet, dass sie höchstens abzählbar unendlich viele Werte annehmen kann; ihre Verteilung kann durch eine Wahrscheinlichkeitsfunktion (Zähldichte) dargestellt werden.
b) Eine stetige Zufallsvariable kann überabzählbar unendlich viele Werte annehmen. Ihre Verteilung wird z.B. durch eine Dichtefunktion repräsentiert.
eigene
Literatur
Weblinks
- [
NN bei Wikipedia], abgefragt 23.7.2024;
- [
NN bei Gablers Wirtschaftslexikon], abgefragt 23.7.2024;
- [
NN bei Bundeszentrale für politische Bildung], abgefragt 23.7.2024;
- [
NN bei Grundlagen Statistik], abgefragt 23.7.2024;
mm
- Weiterleitung:
Hauptartikel-> [[]]
- Synonyme: [[]]
siehe auch-> [[]]
fe
eigene
Literatur
Weblinks
- [
NN bei Wikipedia], abgefragt 23.7.2024;
- [
NN bei Gablers Wirtschaftslexikon], abgefragt 23.7.2024;
- [
NN bei Bundeszentrale für politische Bildung], abgefragt 23.7.2024;
- [
NN bei Grundlagen Statistik], abgefragt 23.7.2024;
Wahrscheinlichkeit
- Weiterleitung: Wahrscheinlichkeit
Hauptartikel-> [[]]
- Synonyme: [[]]
siehe auch-> [[]]
fe
https://de.wikipedia.org/wiki/Wahrscheinlichkeit
Die Wahrscheinlichkeit ist ein allgemeines Maß der Erwartung für ein unsicheres Ereignis.[1] Auf der einen Seite sollen Vorhersagen (Prognosen) über den Ausgang zukünftiger Ereignisse gemacht werden.[2] Auf der anderen Seite soll aber auch bei bereits eingetretenen Ereignissen beurteilt werden, wie gewöhnlich oder ungewöhnlich sie sind.[3] In der Mathematik hat sich mit der Wahrscheinlichkeitstheorie ein eigenes Fachgebiet entwickelt.[4] Es hat mit Versuchen bei Glücksspielen begonnen und ist heute in so gut wie allen Lebensbereichen anzutreffen.[5]
Die klassische Wahrscheinlichkeit nach Laplace dafür, dass bei einem Zufallsexperiment ein bestimmtes Ereignis eintritt, ist das Zahlenverhältnis (Quotient) der Anzahl der günstigen Ergebnisse zur Anzahl der überhaupt möglichen Ergebnisse.[6] Hierin unterscheidet sich die Wahrscheinlichkeit von der Chance, die als Quotient aus der Anzahl der günstigen zur Anzahl der ungünstigen Ergebnisse definiert ist.[7]
http://www.statistics4u.com/fundstat_germ/cc_prob_intro_toc.html Wahrscheinlichkeitstheorie
- Was ist Wahrscheinlichkeit?
Der Begriff "Wahrscheinlichkeit" hat im alltäglichen Gebrauch verschiedene Bedeutungen . Die Wahrscheinlichkeit kann ein Maß dafür sein, mit welcher Erwartung ein bestimmtes Ereignis, z.B. einen Sechser zu würfeln, den Jackpot zu gewinnen, einen Autounfall zu haben oder einen Meteoriteneinschlag auf der Erde zu erleben, eintritt. Wahrscheinlichkeit kann auch als persönliches Maß der Ungewissheit interpretiert werden: die Möglichkeit, jemanden Bekannten zu treffen oder in den Ferien nach Rom zu fahren. Wir benutzen Wahrscheinlichkeit auch, um das Risiko einer Entscheidung oder Investition abzuwägen.
https://wirtschaftslexikon.gabler.de/definition/wahrscheinlichkeit-50718 einem Ereignis A (z.B. Eintreten eines Versicherungsfalles) zugeordnete Zahl zwischen 0 und 1, die mit P(A) bezeichnet wird und die Chance des Eintretens dieses Ereignisses quantifiziert. Das Rechnen mit Wahrscheinlichkeiten erfolgt im Rahmen der Axiome der Wahrscheinlichkeitsrechnung (Kolmogorov-Axiome, Additionssätze, Multiplikationssätze der Wahrscheinlichkeit); die numerische Festlegung von Wahrscheinlichkeiten geschieht nach den Regeln der Wahrscheinlichkeitsrechnung.
eigene
Literatur
Weblinks
- [
NN bei Wikipedia], abgefragt 23.7.2024;
- [
NN bei Gablers Wirtschaftslexikon], abgefragt 23.7.2024;
- [
NN bei Bundeszentrale für politische Bildung], abgefragt 23.7.2024;
- [
NN bei Grundlagen Statistik], abgefragt 23.7.2024;
mm
- Weiterleitung:
Hauptartikel-> [[]]
- Synonyme: [[]]
siehe auch-> [[]]
fe
eigene
Literatur
Weblinks
- [
NN bei Wikipedia], abgefragt 23.7.2024;
- [
NN bei Gablers Wirtschaftslexikon], abgefragt 23.7.2024;
- [
NN bei Bundeszentrale für politische Bildung], abgefragt 23.7.2024;
- [
NN bei Grundlagen Statistik], abgefragt 23.7.2024;
NN
- Weiterleitung:
Hauptartikel-> [[]]
- Synonyme: [[]]
siehe auch-> [[]]
fe
eigene
Literatur
Weblinks
- [
NN bei Wikipedia], abgefragt 23.7.2024;
- [
NN bei Gablers Wirtschaftslexikon], abgefragt 23.7.2024;
- [
NN bei Bundeszentrale für politische Bildung], abgefragt 23.7.2024;
- [
NN bei Grundlagen Statistik], abgefragt 23.7.2024;
mm
- Weiterleitung:
Hauptartikel-> [[]]
- Synonyme: [[]]
siehe auch-> [[]]
fe
eigene
Literatur
Weblinks
- [
NN bei Wikipedia], abgefragt 23.7.2024;
- [
NN bei Gablers Wirtschaftslexikon], abgefragt 23.7.2024;
- [
NN bei Bundeszentrale für politische Bildung], abgefragt 23.7.2024;
- [
NN bei Grundlagen Statistik], abgefragt 23.7.2024;
Literatur
Gesetz
Erlässe
Fachgutachten
- KFS/BW 1 Rz.
- IDW S1 Rz.
Fachliteratur
" *)mwN ausgeblendet finden sich weitere Literaturangaben
- Aschauer / Purtscher (2023), S. ;
- Bachl (2018), S. ;
- Drukarczyk / Schüler (2016), S. ;
- Fleischer / Hüttemann (2015), S. ;
- Ihlau / Duscha (2019), S. ;
- Mandl / Rabel (1997), S. ;
- WP-Handbuch II (2014), Rz. A ;
- WPH-Edition (2018), Rz. A ;
Judikatur
Unterlage(n)
Sortiert nach Dateiname
- Hager: Anschaffungs- und Herstellungskosten, Datei:AHK.pdf, Stand Mai 2021;
- Hager: Äquivalenzprinzipien, Datei:Äquivalenz.pdf, Basisseminar BFA, Stand Feb. 2022;
- Hager: Bewertungsanlass und -zweck - funktionale Bewertung, Datei:BewAZ.pdf, Stand Nov. 2023;
- Hager: Bewertungsobjekt, Datei:Bewertungsobjekt.pdf, Stand Okt. 2020;
- Hager: Brutto- oder Nettounternehmenswert, Datei:Bto-Nto-UW.pdf, Stand Juni 2022;
- Hager: Cash-Flow, Datei:Cash-Flow.pdf, Stand Aug. 2017;
- Hager: Ertragsbegriffe, Datei:Ertrag.pdf, Stand Dez. 2023;
- Hager: Geldflussrechnung, Datei:CF-Kapfluss.pdf, Stand Aug. 2021;
- Hager: Fiktive Anschaffungskosten, Datei:Fiktive AK.pdf, Stand März 2021;
- Hager: Nachweis des Verkehrswertes durch vereinfachte Wertfindung, Datei:GA-vereinfach.pdf, Stand März 2021;
- Hager: Grundbegriffe, Basisseminar BFA, Datei:Grundbegriffe.pdf, Stand Okt. 2020;
- Hager: Grundsätze ordnungsmäßiger Unternehmensbewertung, Datei:Grundsätze-UBW.pdf, Stand Mai 2022;
- Hager: Persönliche Haftung in der Unternehmensbewertung, Datei:Haftung.pdf, Stand Aug. 2021;
- Hager: Geldwertänderung, Datei:Inflation.pdf, Basisseminar BFA, Stand Juli 2016;
- Hager: Liquidationswert, Datei:Liquidationswert.pdf, Stand Februar 2019;
- Hager: Markenrechtsbewertung, Datei:Wertmarke.pdf, Vortrag 26.4.2012 Groß-BP Wien;
- Hager: Auffrischung mathematischer Grundkenntnisse, Basisseminar BFA, Datei:Mathematik-Auffrischung.pdf, Stand August 2023;
- Hager: Bewertungsmethoden – Eine Übersicht , Datei:Methoden-übersicht.pdf, Stand Juni 2018;
- Hager: Objektivierter vs. subjektiver Wert, Datei:Obj-Subj.pdf, Stand Sep. 2023;
- Hager: Anteilsbewertung - Personengesellschaften, Datei:PersGes-ABW.pdf, Stand Dez. 2020;
- Hager: Bewertung von Personengesellschaften, Datei:PersGes-UBW.pdf, Stand Dez. 2020;
- Hager: Was ist bei Prüfung eines Unternehmensbewertungsgutachtens zu beachten – eine kurze Einführung, Datei:Prüfung-Gutachten.pdf, Basisseminar BFA, Stand Nov. 2017;
- Hager: Ermittlung und Bedeutung von Ratings, Datei:Rating.pdf, Stand Okt. 2022;
- Hager: Unsicherheit in der Unternehmensbewertung, Datei:Unsicher.pdf, Basisseminar BFA, Stand Oktober 2015;
- Hager: Shareholder Value, Datei:Shareholdervalue.pdf, Stand Nov. 2021;
- Hager: Ermittlung des Unternehmerlohns, Datei:Unternehmerlohn-Praxis.pdf, Stand Mai 2019;
- Hager: Änderungen durch das neue Fachgutachten KFS/BW1 'Unternehmensbewertung' vom 26.3.2014 Info für Wissensplattform, Datei:Vergleich BW1 (2006)-(2014).pdf, Stand Jan. 2015;
- Hager: Vereinfachtes Ertragswertverfahren - Berechnung, Datei:VEWV-Berechn.pdf, Stand Juli 2020;
- Hager: Im Steuerrecht relevane Werte, Basisseminar BFA, Datei:Welche Werte.pdf, Stand September 2015 nicht mehr aktuell;
- Hager: Wie man mit dem Wr. Verfahren 1996 den gemeinen Wert berechnet, Datei:Wiener Verfahren Berechnung.pdf, Stand Aug. 2020;
- Hager: Wozu braucht man Unternehmensbewertung, Basisseminar BFA, Datei:Wozu Unternehmensbewertung.pdf, Stand September 2015;
Folien
- Hager: "Welche (Unternehmens)Bewertungen werden vom Finanzamt anerkannt?", VWT 6.5.2019, Datei:VWT 2019.pdf
- Hager: "Unternehmensbewertung Basis", BFA 2016, Datei:UBW-Basis(2016).pdf, Stand Oktober 2016
- Hager: "Unternehmensbewertung im Steuerrecht", Linde Forum Unternehmensbewertung 2016, Datei:Forum 16 UBW-StR-Ergänzt.pdf
- Hager: "Unternehmensbewertungsgutachten - schlüssig und nachvollziehbar", JKU 2015, Datei:UBWGA JKU-Linz 151014.pdf
- Hager: "Unternehmensbewertung Basis", BFA 2013, Datei:UBW-Basis 2013.pdf, Stand Februar 2013
- Hager: "Wertermittlung des immateriellen Vermögens Marke", GBP 26.4.2010, Datei:Wertmarke-Präsentation.pdf
siehe auch -> Liste der verwendeten Gesetze und Erlässe, Liste der verwendeten Literatur, Liste englische Fachausdrücke, Liste der verwendeten Abkürzungen und Symbole, Liste der verwendeten Formeln
Weblinks
- [
NN bei Wikipedia], abgefragt 23.7.2024;
- [
NN bei Gablers Wirtschaftslexikon], abgefragt 23.7.2024;
- [
NN bei Bundeszentrale für politische Bildung], abgefragt 23.7.2024;
- [
NN bei Grundlagen Statistik], abgefragt 23.7.2024;
Einzelnachweise
- ↑ Wikipedia, Stichwort: Zufall, abgefragt 23.7.2024.
- ↑
- ↑ [ Wikipedia, Stichwort: ], abgefragt 23.7.2024.
- ↑ [ Gablers Wirtschaftslexikon, Stichwort: ], abgefragt 23.7.2024.
- ↑ [ Bundeszentrale für politische Bildung, Stichwort: ], abgefragt 23.7.2024.
- ↑ [ Grundlagen Statistik, Stichwort: ], abgefragt 23.7.2024.
- ↑
- ↑ [ Wikipedia, Stichwort: ], abgefragt 23.7.2024.
- ↑ [ Gablers Wirtschaftslexikon, Stichwort: ], abgefragt 23.7.2024.
- ↑ [ Bundeszentrale für politische Bildung, Stichwort: ], abgefragt 23.7.2024.
- ↑ [ Grundlagen Statistik, Stichwort: ], abgefragt 23.7.2024.
- ↑ Aus [ Wikipedia, Stichwort: ], abgefragt 23.7.2024.
- ↑ Aus [ Wikipedia, Stichwort: ], abgefragt 23.7.2024.
- ↑ [ Microsoft Support, Stichwort: ], abgefragt 23.7.2024.
- ↑
- ↑ [ Wikipedia, Stichwort: ], abgefragt 23.7.2024.
- ↑ [ Gablers Wirtschaftslexikon, Stichwort: ], abgefragt 23.7.2024.
- ↑ [ Bundeszentrale für politische Bildung, Stichwort: ], abgefragt 23.7.2024.
- ↑ [ Grundlagen Statistik, Stichwort: ], abgefragt 23.7.2024.
- ↑
- ↑ [ Wikipedia, Stichwort: ], abgefragt 23.7.2024.
- ↑ [ Gablers Wirtschaftslexikon, Stichwort: ], abgefragt 23.7.2024.
- ↑ [ Bundeszentrale für politische Bildung, Stichwort: ], abgefragt 23.7.2024.
- ↑ [ Grundlagen Statistik, Stichwort: ], abgefragt 23.7.2024.
- ↑
- ↑ [ Wikipedia, Stichwort: ], abgefragt 23.7.2024.
- ↑ [ Gablers Wirtschaftslexikon, Stichwort: ], abgefragt 23.7.2024.
- ↑ [ Bundeszentrale für politische Bildung, Stichwort: ], abgefragt 23.7.2024.
- ↑ [ Grundlagen Statistik, Stichwort: ], abgefragt 23.7.2024.
- ↑
- ↑ [ Wikipedia, Stichwort: ], abgefragt 23.7.2024.
- ↑ [ Gablers Wirtschaftslexikon, Stichwort: ], abgefragt 23.7.2024.
- ↑ [ Bundeszentrale für politische Bildung, Stichwort: ], abgefragt 23.7.2024.
- ↑ [ Grundlagen Statistik, Stichwort: ], abgefragt 23.7.2024.
- ↑
- ↑ [ Wikipedia, Stichwort: ], abgefragt 23.7.2024.
- ↑ [ Gablers Wirtschaftslexikon, Stichwort: ], abgefragt 23.7.2024.
- ↑ [ Bundeszentrale für politische Bildung, Stichwort: ], abgefragt 23.7.2024.
- ↑ [ Grundlagen Statistik, Stichwort: ], abgefragt 23.7.2024.
- ↑
- ↑ [ Wikipedia, Stichwort: ], abgefragt 23.7.2024.
- ↑ [ Gablers Wirtschaftslexikon, Stichwort: ], abgefragt 23.7.2024.
- ↑ [ Bundeszentrale für politische Bildung, Stichwort: ], abgefragt 23.7.2024.
- ↑ [ Grundlagen Statistik, Stichwort: ], abgefragt 23.7.2024.
- ↑
- ↑ [ Wikipedia, Stichwort: ], abgefragt 23.7.2024.
- ↑ [ Gablers Wirtschaftslexikon, Stichwort: ], abgefragt 23.7.2024.
- ↑ [ Bundeszentrale für politische Bildung, Stichwort: ], abgefragt 23.7.2024.
- ↑ [ Grundlagen Statistik, Stichwort: ], abgefragt 23.7.2024.
[[Kategorie:Mathematischer Begriff]]