Benutzer:Peter Hager/Baustelle/Statistik
Seite aus Benutzer:Peter Hager/Baustelle/Diverse Hinweise#Statistik (31.1.2024) lö
Diese Seite ist noch in Arbeit
nn vollständig, in Arbeit,<s> Kurzinfo! nn verlinkt, (fehlende Links eintragen), kein Link auf diese Seite <s>* Seite auf Termini eintragen
- Seite auf Benutzer:Peter Hager/Baustelle/Stichwörter löschen
- Abkürzung und Formeln eintragen
- Weiterleitung: <!-- #WEITERLEITUNG [[ ]] --> Wenn ein Link auf ein Unterkapitel verweist, dort einfügen: <!-- Bei Änderung Überschrift in [[NN]], [[MM]] ändern. -->
Inhaltsverzeichnis
Begriff (lö)
- Weiterleitung:
Hauptartikel-> [[]]
- Synonyme: [[]]
siehe auch-> [[]]
fe
https://de.wikipedia.org/wiki/Statistik
Statistik „ist die Lehre von Methoden zum Umgang mit quantitativen Informationen“ (Daten).[1] Sie ist eine Möglichkeit, „eine systematische Verbindung zwischen Erfahrung (Empirie) und Theorie herzustellen“.[1] Unter Statistik versteht man die Zusammenfassung bestimmter Methoden zur Analyse empirischer Daten. Ein alter Ausdruck für „Statistik“ ist Sammelforschung.
Die Statistik wird als Hilfswissenschaft von allen empirischen Disziplinen und Naturwissenschaften verwendet, wie zum Beispiel der Medizin (Medizinische Statistik), der Psychologie (Psychometrie), der Politologie, der Soziologie, der Wirtschaftswissenschaft (Ökonometrie), der Biologie (Biostatistik), der Chemie (Chemometrie) und der Physik. Die Statistik stellt somit die theoretische Grundlage aller empirischen Forschung dar. Da die Menge an Daten in allen Disziplinen rasant zunimmt, gewinnt auch die Statistik und die aus ihr abgeleitete Analyse dieser Daten an Bedeutung. Andererseits ist die Statistik ein Teilgebiet der reinen Mathematik. Das Ziel der reinen mathematischen Statistik ist das Beweisen allgemeingültiger Aussagen mit den Methoden der reinen Mathematik. Sie bedient sich dabei der Erkenntnisse der mathematischen Grundlagendisziplinen Analysis und lineare Algebra.
https://de.wikipedia.org/wiki/%C3%96konometrie
https://de.wikipedia.org/wiki/Stochastik
- Statistik
→ Hauptartikel: Statistik
Statistik ist eine auf der Wahrscheinlichkeitstheorie basierende Methodik zur Analyse quantitativer Daten. Dabei verbindet sie empirische Daten mit theoretischen Modellen. Man kann die Statistik unterteilen in die beschreibende Statistik (deskriptive Statistik) und die beurteilende Statistik (schließende Statistik).[21] In der beschreibenden Statistik sammelt man Daten über Zufallsgrößen, stellt die Verteilung von Häufigkeiten graphisch dar und charakterisiert sie durch Lage- und Streuungsmaße. Die Daten gewinnt man aus einer Stichprobe, die Auskunft über die Verteilung der untersuchten Merkmale in einer Grundgesamtheit geben soll. In der beurteilenden Statistik versucht man, aus den Daten einer Stichprobe Rückschlüsse über die Grundgesamtheit zu ziehen. Man erhält dabei Aussagen, die immer mit einer gewissen Unsicherheit behaftet sind. Diese Unsicherheit wird mit Methoden der Wahrscheinlichkeitsrechnung abgeschätzt. Dieses Schätzen von Wahrscheinlichkeiten und das Testen von Hypothesen sind typische Aufgaben der beurteilenden Statistik.[22]
Daten, Stichprobe, Grundgesamtheit, Häufigkeit (absolute, relative), Merkmal, Merkmalsausprägung Häufigkeitsverteilung, Stabdiagramm, Kreisdiagramm, Histogramm, Stamm-Blatt-Diagramm explorative Datenanalyse, Minimum, Quartil, Quantil, Median, Maximum, Boxplot arithmetisches Mittel, geometrischer Mittelwert, harmonisches Mittel, gewichtetes Mittel Stichprobenvarianz, Stichprobenstandardabweichung, Abweichung, Spannweite Hypothesentest, Testen nach Bayes, Schätzen
https://de.wikipedia.org/wiki/Parameter_(Statistik) In der Statistik fassen aggregierende Parameter oder Maßzahlen die wesentlichen Eigenschaften einer Häufigkeitsverteilung, z. B. einer längeren Reihe von Messdaten, oder einer Wahrscheinlichkeitsverteilung zusammen.
- Lageparameter
- Streuungsparameter
* Konzentrationsparameter
- Gestaltmaße bzw. -parameter fe Kap
eigene Der Begriff bezeichnet:
Begriff bedeutet.
Bedeutung
- Weiterleitung:
Hauptartikel-> [[]]
- Synonyme: [[]]
siehe auch-> [[]]
fe
eigene
Wichtige Kenngrößen
- Weiterleitung:
Hauptartikel-> [[]]
- Synonyme: [[]]
siehe auch-> [[]]
fe
https://de.wikipedia.org/wiki/Deskriptive_Statistik
- Kenngrößen (statistische Kennwerte)
→ Hauptartikel: Parameter (Statistik)
Drei Arten von Kenngrößen sind hauptsächlich von Interesse:
- Lagemaße: als zentrale Tendenz einer Häufigkeitsverteilung. Aus der Lage der verschiedenen Werte für die zentrale Tendenz zueinander lassen sich Schiefe und Exzess einer Häufigkeitsverteilung bestimmen.
- Streuungsmaße: für die Variabilität (Streuung oder Dispersion) einer Häufigkeitsverteilung und
- Zusammenhangsmaße: für den Zusammenhang (auch: Korrelation) zweier Variablen.
Die Wahl der geeigneten Kenngrößen hängt vom Skalen- oder Messniveau der Daten und von der Robustheit der Kenngröße ab.
https://de.wikipedia.org/wiki/Parameter_(Statistik)
- Lageparameter
- Streuungsparameter
- Konzentrationsparameter
- Gestaltmaße bzw. -parameter
eigene
Ermittlung / Berechnung
fe
Lageparameter
Hlf (Lage)
Hauptartikel-> Lageparameter
- Synonyme: Lagewert
siehe auch-> Mittelwert, Median, Modalwert
(zT) ok
fe
eigene
Mitte der Datenmenge
Hauptartikel-> Mittelwert, Median, Modalwert
erg
Um rechnen zu können müssen Daten konkretisiert werden, dazu orientiert man sich idR an der Mitte. Dazu bieten sich an:
- Mittelwerte insbesondere arithmetisches, geometrisches und harmonisches Mittel.
- Median
- Modalwert
erg Belastbarkeit
Extreme (Min/Max)
Hauptartikel-> Lageparameter siehe auch-> Spannweite
(zT) ok
Ausreißer
Hauptartikel-> Lageparameter
(zT) ok
Quantil
- Weiterleitung: Quantil, Quartil, Perzentil
(zT) ok
Ein Quantil ist ein Lagemaß, das in der Wahrscheinlichkeitsverteilung links die Wahrscheinlichkeit und rechts die Wahrscheinlichkeit angibt. [16]
Spezielle Quantile sind:
- Median p = 50%
- Quartil: p = 25%, 50%, 75%, 100%
- Perzentil: Wahrscheinlichkeit steigt in Prozentschritten.
- Quartil
Quartile teilen die zugrundeliegende Verteilung in vier Viertel.
- Unteres Quartil: p = 25%, Verwendung als untere Grenze der Probe;
- Mittleres Quartil: p = 50%, entspricht dem Median;
- Oberes Quartil: p = 75%, Verwendung als obere Grenze der Probe;
Der Abstand zwischen unterem und oberen Quantil wird als Interquartilsabstand bezeichnet und stellt ein wichtiges Streuungsmaß dar.
- Perzentil
Als Perzentile werden die Quantile von 0 , 01 bis 0 , 99 in Schritten von 0,01 bezeichnet. [17] Sie haben besonders Bedeutung für die Bandbreite der Unternehmensbewertung.
Excel Mit der Funktion QUARTIL() lassen sich diese berechnen.[18]
Weblinks
- Empirisches Quantil bei Wikipedia, abgefragt 3.2.2024;
- Quantil (Wahrscheinlichkeitstheorie) bei Wikipedia, abgefragt 3.2.2024;
- Quantil bei Grundlagen Statistik, abgefragt 3.2.2024;
- Quartil bei Gablers Wirtschaftslexikon, abgefragt 3.2.2024;
- Quartil bei Grundlagen Statistik, abgefragt 3.2.2024;
Darstellung (Box-Plot)
- Weiterleitung: Box-Plot
erg
https://de.wikipedia.org/wiki/Box-Plot
https://wirtschaftslexikon.gabler.de/definition/box-plot-53780
http://www.statistics4u.com/fundstat_germ/cc_boxwhisk.html
eigene
Box-Plots (Schachteldiagramme) enthalten die wichtigsten Parameter einer univariaten Verteilung. Ein Box-Plot besteht aus Rechtecken, die den Interquartilsabstand. Innerhalb dieser Box wird der Median als trennende Linie dargestellt. Zur Rechten und zur Linken der Box sind Linien (whiskers[19]) Dieser kann in Excel nach einem fixen Betrag, oder einem Prozentsatz des Interquartilsabstandes festgelegt werden. In manchen Fällen wird der Mittelwert als +Zeichen dargestellt.[20]
Manchmal werden auch Ausreißer und Extremwerte eingetragen.
Informationen in der Box-Plot:
- Median: Strich innerhalb der Box;
- Unteres Quartil: Beginn der Box;
- Oberes Quartil: Ende der Box;
- Interquartilsabstand : Ausdehnung der Box;
- Ausreißer: Werte jenseits der Whiskers;
- Spannweite: Abstand zwischen den Whiskers;
Excel Eine Anleitung zur Erstellung eines Box-Plots findet sich bei Microsoft-Support, Stichwort Box-Plott, abgefragt 3.2.2024.
Literatur
Weblinks
- bei Wikipedia, abgefragt 3.2.2024;
- Box-Plot bei Gablers Wirtschaftslexikon, abgefragt 3.2.2024;
- Box-Plot bei Grundlagen Statistik, abgefragt 3.2.2024;
mm
- Weiterleitung:
Hauptartikel-> [[]]
- Synonyme: [[]]
siehe auch-> [[]]
fe
eigene
Berechnung[26]
NN[27]
Benutzer:Peter_Hager/Praktische_Hilfen#Mathematik
läVariable | |
= | Ergebnis |
Variable |
Excel
- NN lässt sich in Excel mit der Funktion
VAR.P()ermitteln.[28]
Literatur
- Falkenberg (1975), S.
17; - Hackl ua (1982), S.
17;
Weblinks
- [
NN bei Wikipedia], abgefragt 3.2.2024;
- [
NN bei Gablers Wirtschaftslexikon], abgefragt 3.2.2024;
- [
NN bei Bundeszentrale für politische Bildung], abgefragt 3.2.2024;
- [
NN bei Grundlagen Statistik], abgefragt 3.2.2024;
Streuungsparameter
Hlf (Str)
- Weiterleitung: Streuungsparameter, Streuungsmaß
- Synonyme: Streuungsmaß
siehe auch-> Lageparameter
(zT) ok
https://de.wikipedia.org/wiki/Streuungsmaß_(Statistik)
https://wirtschaftslexikon.gabler.de/definition/streuungsmass-45610
http://www.statistics4u.com/fundstat_germ/cc_measvariation.html
https://wirtschaftslexikon.gabler.de/definition/streuung-43301 Statistik
Dispersion, Variabilität; das mehr oder minder weite Entferntsein der Beobachtungswerte eines Merkmals bzw. der Ausprägungen einer Zufallsvariablen voneinander. Die Quantifizierung der Streuung erfolgt durch Streuungsmaße.
eigene
Streuungsmaße (Streuungsparameter) geben Auskunft über die Verteilung link? der Werte einer Funktion link oder Stichprobelink . Dabei ist nach dem Bezug zu unterscheiden
- Streuung um das arithmetische Mittel
- Varianz
- Standardabweichung
- Variationskoeffizient
-
weiters: Summe der Abweichungsquadrate, mittlere absolute Abweichungev lö
- Streuung um den Median
- Interquartilsabstand
-
weiters: Quantilsabstand, mittlere absolute Abweichung vom Median, Median der absoluten Abweichungen vom Median
- Weitere Streuungsmaße
- Spannweite
- Geometrische Standardabweichung
Berechnung[34]
Excel
- NN lässt sich in Excel mit der Funktion
VAR.P()ermitteln.[35]
Literatur
Weblinks
- Streuungsmaß (Statistik) bei Wikipedia, abgefragt 3.2.2024;
- Streuungsmaß bei Gablers Wirtschaftslexikon, abgefragt 3.2.2024;
- Streumaß bei Grundlagen Statistik, abgefragt 3.2.2024;
Varianz
- Weiterleitung: Varianz
(zT) ok
Die Varianz [41] ( ) ist ein statistisches Streuungsmaß. Er ergibt sich aus der quadratischen Abweichung der einzelnen Werte vom Mittelwert.
Bitte beachten Sie bei der Bezeichnung für die Varianz und die Standardabweichung: Sie wird mit s² (bzw s) bezeichnet, wenn sie aus einer Stichprobe berechnet wurde. Wenn sie aus einer Grundgesamtheit berechnet wurde, wird die Standardabweichung durch den griechischen Buchstaben σ (Sigma) dargestellt.[42]
Die Abkürzung Steuer verwendet. Daher wird verwendet, das entspricht der Fachliteratur Unternehmensbewertung, vgl. zB Aschauer / Purtscher (2023), S. XVIII.
für die Stichprobe für die UBW zutreffender, aber das wird schon fürDie Varianz ist ein nicht relativiertes Streuungsmaß.[43] Wenn also der Mittelwert in Meter berechnet wird, beträgt die Varianz Quadratmeter. mit wem kann ich das besprechen?
Berechnung[44]
Diese Formel gilt für diskrete Verteilungen, bei stetigen Verteilungen ist die Varianz als Integral der quadaratischen Abweichungen zu ermitteln.[45]
Excel
- Die Varianz der Grundgesamtheit lässt sich in Excel mit der Funktion VAR.P() ermitteln.[46]
- Die Varianz der Stichprobe lässt sich in Excel mit der Funktion VAR.S() ermitteln.[47]
NN[48]
Literatur
- Falkenberg (1975), S. 297 f;
- Hackl ua (1982), S. 17;
Weblinks
- Empirische Varianz bei Wikipedia, abgefragt 3.2.2024;
- Varianz bei Wikipedia, abgefragt 3.2.2024;
- Varianz bei Gablers Wirtschaftslexikon, abgefragt 3.2.2024;
- Varianz bei Grundlagen Statistik, abgefragt 3.2.2024;
- Varianz (Stochastik) bei Wikipedia, abgefragt 3.2.2024;
Standardabweichung
- Weiterleitung: Standardabweichung
(zT) ok
Die Standardabweichung ist die Wurzel der Varianz. Sie stellt das gebräuchlichste Streuungsmaß dar, da sie anschaulicher als die Varianz ist. Sie hat dieselbe Größenordnung wie die beobachteten Werte.[54]
Berechnung
Excel
- Die Standardabweichung der Grundgesamtheit lässt sich in Excel direkt mit der Funktion STABW.N() ermitteln.[55]
- Die Standardabweichung der Stichprobe lässt sich in Excel direkt mit der Funktion STABW.S() ermitteln.[56]
- Die Standardabweichung lässt sich in Excel indirekt als Quadratwurzel der Varianz WURZEL() ermitteln.[57]
Literatur
- Hackl ua (1982), S. 17;
Weblinks
- Empirische Varianz bei Wikipedia, abgefragt 3.2.2024;
- Standardabweichung bei Gablers Wirtschaftslexikon, abgefragt 3.2.2024;
- Standardabweichung bei Grundlagen Statistik, abgefragt 3.2.2024;
- Varianz (Stochastik) bei Wikipedia, abgefragt 3.2.2024;
Variationskoeffizient
- Weiterleitung: Variationskoeffizient
(zT) ok
Der Variationskoeffizient ist das Verhältnis zwischen Standardabweichung und (arithmetisches) Mittelwert. Er wird häufig in Prozent angegeben.
Berechnung
Excel
- Für den Variationskoeffizient gibt es keine eigene Excelfunktion.
Literatur
- Hackl ua (1982), S. 17;
Weblinks
- Empirische Varianz bei Wikipedia, abgefragt 3.2.2024;
- Variationskoeffizient bei Wikipedia, abgefragt 3.2.2024;
- Variationskoeffizient bei Gablers Wirtschaftslexikon, abgefragt 3.2.2024;
- https://wirtschaftslexikon.gabler.de/definition/variationskoeffizient-49581 Variationskoeffizient bei Grundlagen Statistik, abgefragt 3.2.2024;
Interquartilsabstand
- Weiterleitung: Interquartilsabstand
siehe auch-> Box-Plot
(zT) ok
</s>https://de.wikipedia.org/wiki/Interquartilsabstand_(deskriptive_Statistik) </s>
</s>https://wirtschaftslexikon.gabler.de/definition/mittlerer-quartilsabstand-36941 </s>
</s>http://www.statistics4u.com/fundstat_germ/cc_iqr.html </s>
eigene Der Interquartilsabstand stellt den Abstand zwischen dem ersten und dritten Quartil dar. In seiner Mitte befindet sich der Median. Er enthält genau 50% der Datensätze.[68]
Berechnung[69]
Literatur
Weblinks
- Interquartilsabstand (deskriptive Statistik) bei Wikipedia, abgefragt 3.2.2024;
- Mittlerer-Quartilsabstand bei Gablers Wirtschaftslexikon, abgefragt 3.2.2024;
- Interquartilsabstand bei Grundlagen Statistik, abgefragt 3.2.2024;
Spannweite
- Weiterleitung: Spannweite
siehe auch-> Extremwert
(zT) ok
https://de.wikipedia.org/wiki/Spannweite_(Statistik)
https://wirtschaftslexikon.gabler.de/definition/spannweite-43726
eigene Die Spannweite ist ein (einfaches) Streuungsmaß. Es berechnet sich als Abweichung zwischen dem größten und dem kleinsten Messwert. Die Spannweite ist nicht robust gegenüber Ausreißern.[75]
In der Box-Plot findet man sie nur, wenn die Ausreißer dargestellt sind.
Berechnung[76]
NN[77]
Excel
- Die Spannweite lässt sich in Excel aus der Diffenz von MAX() und MIN() ermitteln.
Literatur
Weblinks https://de.wikipedia.org/wiki/Spannweite_(Statistik) Spannweite (Statistik)
- [
NN bei Wikipedia], abgefragt 3.2.2024;
NN bei Gablers Wirtschaftslexikon], abgefragt 3.2.2024;
- [
NN bei Bundeszentrale für politische Bildung], abgefragt 3.2.2024;
- [
NN bei Grundlagen Statistik], abgefragt 3.2.2024;
mm
- Weiterleitung:
Hauptartikel-> [[]]
- Synonyme: [[]]
siehe auch-> [[]]
fe
eigene
Berechnung[83]
NN[84]
Benutzer:Peter_Hager/Praktische_Hilfen#Mathematik
läVariable | |
= | Ergebnis |
Variable |
Excel
- NN lässt sich in Excel mit der Funktion
VAR.P()ermitteln.[85]
Literatur
- Falkenberg (1975), S.
17; - Hackl ua (1982), S.
17;
Weblinks
- [
NN bei Wikipedia], abgefragt 3.2.2024;
- [
NN bei Gablers Wirtschaftslexikon], abgefragt 3.2.2024;
- [
NN bei Bundeszentrale für politische Bildung], abgefragt 3.2.2024;
- [
NN bei Grundlagen Statistik], abgefragt 3.2.2024;
Erwartungswert
- Weiterleitung:
Hauptartikel-> Erwartungswert
- Synonyme: [[]]
siehe auch-> [[]]
fe
Kruschwitz ua 58 Der Erwartungswert spiegelt den durchschnittlichen Wert der Ausprägungen einer Zufallsgröße wider. Das ist typischerweise jene Realisation, die mit der größten Wahrscheinlichkeit l).Uftritt. Daher pflegt man man bei der Unternehmensbewertung davon auszugehen, dass die zukünftige Rendite ihrem Erwartungswert entspricht.
Wie aber lässt sich dieser Erwartungswert bestimmen? __ Solange wir nur eine Stiehpf;;-b~ aus alle;-R.~ili~ationen der VerteÜwg'fs. kennen, bleibt uns der Erwartungswert grundsätzlich unbekannt. Wir können ihn bestenfalls schätzen. Hier hilft nun die Annahme weiter, dass die Renditen des zu bewertenden Unternehmens stationär sind. Unter dieser Bedingung können wir nämlich das arithmetische Mittel der beobachteten Renditen verwenden und mit einiger Gewissheit darauf vertrauen, dass dieses arithmetische Mittel einen brauchbaren Anhaltspunkt für den Erwartungswert der Renditen darstellt.79
Erwartungswert Der Erwartungswert ist die Summe aller möglichen Umweltzustände multipliziert mit deren Eintrittswahrscheinlichkeit. Er bezeichnet jenen Wert der bei einer großen Anzahl von Versuchen ergibt.[1] Erwartungswert bei Wikipedia, abgefragt am 12.6.2017, 'nicht mehr aktuell
https://de.wikipedia.org/wiki/Erwartungswert Der Erwartungswert (selten und doppeldeutig Mittelwert) ist ein Grundbegriff der Stochastik. Der Erwartungswert ist eine Kennzahl einer Zufallsvariablen. Bei einer engeren Definition ist der Erwartungswert einer Zufallsvariablen eine reelle Zahl und damit endlich; bei einer weiteren Definition sind für den Erwartungswert einer Zufallsvariablen auch die Werte ± ∞ {\displaystyle \pm \infty } zugelassen. Es gibt Zufallsvariablen, für die kein Erwartungswert definiert ist.
Hat eine Zufallsvariable einen endlichen Erwartungswert, so wird dieser häufig mit μ {\displaystyle \mu } abgekürzt; er beschreibt dann die Zahl, die die Zufallsvariable im Mittel annimmt. Er ergibt sich zum Beispiel bei unbegrenzter Wiederholung des zugrunde liegenden Experiments als Durchschnitt der Ergebnisse. Das Gesetz der großen Zahlen beschreibt, in welcher Form die Durchschnitte der Ergebnisse bei wachsender Anzahl der Experimente gegen den endlichen Erwartungswert streben, oder anders gesagt, wie die Stichprobenmittelwerte bei wachsendem Stichprobenumfang gegen den Erwartungswert konvergieren.
Ein endlicher Erwartungswert bestimmt die Lokalisation (Lage) der Verteilung der Zufallsvariablen und ist vergleichbar mit dem empirischen arithmetischen Mittel einer Häufigkeitsverteilung in der deskriptiven Statistik, jedoch mit einem wichtigen Unterschied: Der Erwartungswert ist der „wahre“ Mittelwert einer Zufallsvariablen (Mittelwert der Grundgesamtheit), während sich das arithmetische Mittel in der Regel nur auf eine Stichprobe von Werten bezieht (Stichprobenmittel). Eine neue Stichprobe wird einen unterschiedlichen arithmetischen Mittelwert liefern, jedoch bleibt der Erwartungswert μ {\displaystyle \mu } immer gleich. Siehe auch: Lageparameter (deskriptive Statistik)
Der Erwartungswert berechnet sich als nach der Wahrscheinlichkeit gewichtetes Mittel der Werte, die die Zufallsvariable annimmt. Er muss selbst jedoch nicht einer dieser Werte sein.
Weil der Erwartungswert einer Zufallsvariablen nur von deren Wahrscheinlichkeitsverteilung abhängt, wird auch vom Erwartungswert einer Wahrscheinlichkeitsverteilung gesprochen, ohne Bezug auf eine Zufallsvariable. Der endliche Erwartungswert einer Zufallsvariablen kann als Schwerpunkt der Wahrscheinlichkeitsmasse betrachtet werden und wird daher als ihr erstes Moment bezeichnet.
eigene
Berechnung[91]
NN[92]
Benutzer:Peter_Hager/Praktische_Hilfen#Mathematik
läVariable | |
= | Ergebnis |
Variable |
Excel
- NN lässt sich in Excel mit der Funktion
VAR.P()ermitteln.[93]
Literatur
- Falkenberg (1975), S.
17; - Hackl ua (1982), S.
17;
Weblinks
- [
NN bei Wikipedia], abgefragt 3.2.2024;
- [
NN bei Gablers Wirtschaftslexikon], abgefragt 3.2.2024;
- [
NN bei Bundeszentrale für politische Bildung], abgefragt 3.2.2024;
- [
NN bei Grundlagen Statistik], abgefragt 3.2.2024;
Gestaltparameter
- Weiterleitung: Gestaltparameter
Hauptartikel-> [[]]
- Synonyme: [[]]
siehe auch-> [[]]
fe
eigene
Berechnung[99]
NN[100]
Benutzer:Peter_Hager/Praktische_Hilfen#Mathematik
läVariable | |
= | Ergebnis |
Variable |
Excel
- NN lässt sich in Excel mit der Funktion
VAR.P()ermitteln.[101]
Literatur
- Falkenberg (1975), S.
17; - Hackl ua (1982), S.
17;
Weblinks https://de.wikipedia.org/wiki/Erwartungswert
- [
NN bei Wikipedia], abgefragt 3.2.2024;
- [
NN bei Gablers Wirtschaftslexikon], abgefragt 3.2.2024;
- [
NN bei Bundeszentrale für politische Bildung], abgefragt 3.2.2024;
- [
NN bei Grundlagen Statistik], abgefragt 3.2.2024;
mm
- Weiterleitung:
Hauptartikel-> [[]]
- Synonyme: [[]]
siehe auch-> [[]]
fe
eigene
Berechnung[107]
NN[108]
Benutzer:Peter_Hager/Praktische_Hilfen#Mathematik
läVariable | |
= | Ergebnis |
Variable |
Excel
- NN lässt sich in Excel mit der Funktion
VAR.P()ermitteln.[109]
Literatur
- Falkenberg (1975), S.
17; - Hackl ua (1982), S.
17;
Weblinks https://de.wikipedia.org/wiki/Erwartungswert
- [
NN bei Wikipedia], abgefragt 3.2.2024;
- [
NN bei Gablers Wirtschaftslexikon], abgefragt 3.2.2024;
- [
NN bei Bundeszentrale für politische Bildung], abgefragt 3.2.2024;
- [
NN bei Grundlagen Statistik], abgefragt 3.2.2024;
NN
- Weiterleitung:
Hauptartikel-> [[]]
- Synonyme: [[]]
siehe auch-> [[]]
fe
eigene
Berechnung[115]
NN[116]
Benutzer:Peter_Hager/Praktische_Hilfen#Mathematik
läVariable | |
= | Ergebnis |
Variable |
Excel
- NN lässt sich in Excel mit der Funktion
VAR.P()ermitteln.[117]
Literatur
- Falkenberg (1975), S.
17; - Hackl ua (1982), S.
17;
Weblinks https://de.wikipedia.org/wiki/Erwartungswert
- [
NN bei Wikipedia], abgefragt 3.2.2024;
- [
NN bei Gablers Wirtschaftslexikon], abgefragt 3.2.2024;
- [
NN bei Bundeszentrale für politische Bildung], abgefragt 3.2.2024;
- [
NN bei Grundlagen Statistik], abgefragt 3.2.2024;
mm
- Weiterleitung:
Hauptartikel-> [[]]
- Synonyme: [[]]
siehe auch-> [[]]
fe
eigene
Berechnung[123]
NN[124]
Benutzer:Peter_Hager/Praktische_Hilfen#Mathematik
läVariable | |
= | Ergebnis |
Variable |
Excel
- NN lässt sich in Excel mit der Funktion
VAR.P()ermitteln.[125]
Literatur
- Falkenberg (1975), S.
17; - Hackl ua (1982), S.
17;
Weblinks https://de.wikipedia.org/wiki/Erwartungswert
- [
NN bei Wikipedia], abgefragt 3.2.2024;
- [
NN bei Gablers Wirtschaftslexikon], abgefragt 3.2.2024;
- [
NN bei Bundeszentrale für politische Bildung], abgefragt 3.2.2024;
- [
NN bei Grundlagen Statistik], abgefragt 3.2.2024;
NN
- Weiterleitung:
Hauptartikel-> [[]]
- Synonyme: [[]]
siehe auch-> [[]]
fe
eigene
Berechnung[131]
NN[132]
Benutzer:Peter_Hager/Praktische_Hilfen#Mathematik
läVariable | |
= | Ergebnis |
Variable |
Excel
- NN lässt sich in Excel mit der Funktion
VAR.P()ermitteln.[133]
Literatur
- Falkenberg (1975), S.
17; - Hackl ua (1982), S.
17;
Weblinks https://de.wikipedia.org/wiki/Erwartungswert
- [
NN bei Wikipedia], abgefragt 3.2.2024;
- [
NN bei Gablers Wirtschaftslexikon], abgefragt 3.2.2024;
- [
NN bei Bundeszentrale für politische Bildung], abgefragt 3.2.2024;
- [
NN bei Grundlagen Statistik], abgefragt 3.2.2024;
Literatur
Gesetz
Erlässe
Fachgutachten
Fachliteratur
" *)mwN ausgeblendet finden sich weitere Literaturangaben
* Aschauer / Purtscher (2023), S. ;
- Bachl (2018), S. ;
- Drukarczyk / Schüler (2016), S. ;
- Fleischer / Hüttemann (2015), S. ;
- Ihlau / Duscha (2019), S. ;
- Mandl / Rabel (1997), S. ;
- WP-Handbuch II (2014), Rz. A ;
- WPH-Edition (2018), Rz. A ;
- Kruschwitz ua (2009), S. 56 ff;
Zu Lit Kruschwitz ua (2009): Kruschwitz ua, "Unternehmensbewertung für die Praxis", Schäffer-Poeschel 2009;
Judikatur
Unterlage(n)
Sortiert nach Dateiname
* Hager: Auffrischung mathematischer Grundkenntnisse, Basisseminar BFA, Datei:Mathematik-Auffrischung.pdf, Stand August 2023;
Folien
siehe auch -> Liste der verwendeten Literatur ev, Liste der verwendeten Abkürzungen und Symbole, Liste der verwendeten Formeln
Weblinks
- [
NN bei Wikipedia], abgefragt 3.2.2024;
- [
NN bei Gablers Wirtschaftslexikon], abgefragt 3.2.2024;
- [
NN bei Bundeszentrale für politische Bildung], abgefragt 3.2.2024;
- [
NN bei Grundlagen Statistik], abgefragt 3.2.2024;
Einzelnachweise
- ↑
- ↑ [ Wikipedia, Stichwort: ], abgefragt 3.2.2024.
- ↑ [ Gablers Wirtschaftslexikon, Stichwort: ], abgefragt 3.2.2024.
- ↑ [ Bundeszentrale für politische Bildung, Stichwort: ], abgefragt 3.2.2024.
- ↑ [ Grundlagen Statistik, Stichwort: ], abgefragt 3.2.2024.
- ↑
- ↑ [ Wikipedia, Stichwort: ], abgefragt 3.2.2024.
- ↑ [ Gablers Wirtschaftslexikon, Stichwort: ], abgefragt 3.2.2024.
- ↑ [ Bundeszentrale für politische Bildung, Stichwort: ], abgefragt 3.2.2024.
- ↑ [ Grundlagen Statistik, Stichwort: ], abgefragt 3.2.2024.
- ↑
- ↑ [ Wikipedia, Stichwort: ], abgefragt 3.2.2024.
- ↑ [ Gablers Wirtschaftslexikon, Stichwort: ], abgefragt 3.2.2024.
- ↑ [ Bundeszentrale für politische Bildung, Stichwort: ], abgefragt 3.2.2024.
- ↑ [ Grundlagen Statistik, Stichwort: ], abgefragt 3.2.2024.
- ↑ Wikipedia, Stichwort: Empirisches Quantil, abgefragt 3.2.2024.
- ↑ Wikipedia, Stichwort: Empirisches Quantil, abgefragt 3.2.2024.
- ↑ Vgl. Microsoft Support, Stichwort Quartille, abgefragt 3.2.2024.
- ↑ Engl. für "Schnurhaare".
- ↑ Grundlagen Statistik, Stichwort: Box-Plots, abgefragt 3.2.2024.
- ↑
- ↑ [ Wikipedia, Stichwort: ], abgefragt 3.2.2024.
- ↑ [ Gablers Wirtschaftslexikon, Stichwort: ], abgefragt 3.2.2024.
- ↑ [ Bundeszentrale für politische Bildung, Stichwort: ], abgefragt 3.2.2024.
- ↑ [ Grundlagen Statistik, Stichwort: ], abgefragt 3.2.2024.
- ↑ Aus ], abgefragt 3.2.2024.
- ↑ Aus ], abgefragt 3.2.2024.
- ↑ [ Microsoft Support, Stichwort: ], abgefragt 3.2.2024.
- ↑
- ↑ [ Wikipedia, Stichwort: ], abgefragt 3.2.2024.
- ↑ [ Gablers Wirtschaftslexikon, Stichwort: ], abgefragt 3.2.2024.
- ↑ [ Bundeszentrale für politische Bildung, Stichwort: ], abgefragt 3.2.2024.
- ↑ [ Grundlagen Statistik, Stichwort: ], abgefragt 3.2.2024.
- ↑ Aus ], abgefragt 3.2.2024.
- ↑ [ Microsoft Support, Stichwort: ], abgefragt 3.2.2024.
- ↑
- ↑ [ Wikipedia, Stichwort: ], abgefragt 3.2.2024.
- ↑ [ Gablers Wirtschaftslexikon, Stichwort: ], abgefragt 3.2.2024.
- ↑ [ Bundeszentrale für politische Bildung, Stichwort: ], abgefragt 3.2.2024.
- ↑ [ Grundlagen Statistik, Stichwort: ], abgefragt 3.2.2024.
- ↑ Vom lat. variantia = "Verschiedenheit" bzw. variare "[ver]ändern, verschieden sein"; vgl. Wikipedia, Stichwort: Varianz, abgefragt 3.2.2024.
- ↑ Grundlagen Statistik, Stichwort: Varianz, abgefragt 3.2.2024.
- ↑ Gablers Wirtschaftslexikon, Stichwort: Varianz, abgefragt 3.2.2024.
- ↑ Aus Hackl ua (1982), S. 17.
- ↑ Vgl. Formel in Falkenberg (1975), S. 297.
- ↑ Microsoft Support, Stichwort: Var.p, abgefragt 3.2.2024.
- ↑ Microsoft Support, Stichwort: Var.s, abgefragt 3.2.2024.
- ↑ Aus ], abgefragt 3.2.2024.
- ↑
- ↑ [ Wikipedia, Stichwort: ], abgefragt 3.2.2024.
- ↑ [ Gablers Wirtschaftslexikon, Stichwort: ], abgefragt 3.2.2024.
- ↑ [ Bundeszentrale für politische Bildung, Stichwort: ], abgefragt 3.2.2024.
- ↑ [ Grundlagen Statistik, Stichwort: ], abgefragt 3.2.2024.
- ↑ Wikipedia, Stichwort: Empirische Varianz, abgefragt 3.2.2024.
- ↑ Microsoft Support, Stichwort: Stabw.n, abgefragt 3.2.2024.
- ↑ Microsoft Support, Stichwort: Stabw.s, abgefragt 3.2.2024.
- ↑ Microsoft Support, Stichwort: Wurzel, abgefragt 3.2.2024.
- ↑
- ↑ [ Wikipedia, Stichwort: ], abgefragt 3.2.2024.
- ↑ [ Gablers Wirtschaftslexikon, Stichwort: ], abgefragt 3.2.2024.
- ↑ [ Bundeszentrale für politische Bildung, Stichwort: ], abgefragt 3.2.2024.
- ↑ [ Grundlagen Statistik, Stichwort: ], abgefragt 3.2.2024.
- ↑
- ↑ [ Wikipedia, Stichwort: ], abgefragt 3.2.2024.
- ↑ [ Gablers Wirtschaftslexikon, Stichwort: ], abgefragt 3.2.2024.
- ↑ [ Bundeszentrale für politische Bildung, Stichwort: ], abgefragt 3.2.2024.
- ↑ [ Grundlagen Statistik, Stichwort: ], abgefragt 3.2.2024.
- ↑ Grundlagen Statistik, Stichwort: Interquartilsabstand, abgefragt 3.2.2024.
- ↑ Aus ], abgefragt 3.2.2024.
- ↑
- ↑ [ Wikipedia, Stichwort: ], abgefragt 3.2.2024.
- ↑ [ Gablers Wirtschaftslexikon, Stichwort: ], abgefragt 3.2.2024.
- ↑ [ Bundeszentrale für politische Bildung, Stichwort: ], abgefragt 3.2.2024.
- ↑ [ Grundlagen Statistik, Stichwort: ], abgefragt 3.2.2024.
- ↑ Wikipedia, Stichwort: Spannweite (Statistik), abgefragt 3.2.2024.
- ↑ Aus Wikipedia, Stichwort: Spannweite (Statistik), abgefragt 3.2.2024.
- ↑ Aus ], abgefragt 3.2.2024.
- ↑
- ↑ [ Wikipedia, Stichwort: ], abgefragt 3.2.2024.
- ↑ [ Gablers Wirtschaftslexikon, Stichwort: ], abgefragt 3.2.2024.
- ↑ [ Bundeszentrale für politische Bildung, Stichwort: ], abgefragt 3.2.2024.
- ↑ [ Grundlagen Statistik, Stichwort: ], abgefragt 3.2.2024.
- ↑ Aus ], abgefragt 3.2.2024.
- ↑ Aus ], abgefragt 3.2.2024.
- ↑ [ Microsoft Support, Stichwort: ], abgefragt 3.2.2024.
- ↑
- ↑ [ Wikipedia, Stichwort: ], abgefragt 3.2.2024.
- ↑ [ Gablers Wirtschaftslexikon, Stichwort: ], abgefragt 3.2.2024.
- ↑ [ Bundeszentrale für politische Bildung, Stichwort: ], abgefragt 3.2.2024.
- ↑ [ Grundlagen Statistik, Stichwort: ], abgefragt 3.2.2024.
- ↑ Aus ], abgefragt 3.2.2024.
- ↑ Aus ], abgefragt 3.2.2024.
- ↑ [ Microsoft Support, Stichwort: ], abgefragt 3.2.2024.
- ↑
- ↑ [ Wikipedia, Stichwort: ], abgefragt 3.2.2024.
- ↑ [ Gablers Wirtschaftslexikon, Stichwort: ], abgefragt 3.2.2024.
- ↑ [ Bundeszentrale für politische Bildung, Stichwort: ], abgefragt 3.2.2024.
- ↑ [ Grundlagen Statistik, Stichwort: ], abgefragt 3.2.2024.
- ↑ Aus ], abgefragt 3.2.2024.
- ↑ Aus ], abgefragt 3.2.2024.
- ↑ [ Microsoft Support, Stichwort: ], abgefragt 3.2.2024.
- ↑
- ↑ [ Wikipedia, Stichwort: ], abgefragt 3.2.2024.
- ↑ [ Gablers Wirtschaftslexikon, Stichwort: ], abgefragt 3.2.2024.
- ↑ [ Bundeszentrale für politische Bildung, Stichwort: ], abgefragt 3.2.2024.
- ↑ [ Grundlagen Statistik, Stichwort: ], abgefragt 3.2.2024.
- ↑ Aus ], abgefragt 3.2.2024.
- ↑ Aus ], abgefragt 3.2.2024.
- ↑ [ Microsoft Support, Stichwort: ], abgefragt 3.2.2024.
- ↑
- ↑ [ Wikipedia, Stichwort: ], abgefragt 3.2.2024.
- ↑ [ Gablers Wirtschaftslexikon, Stichwort: ], abgefragt 3.2.2024.
- ↑ [ Bundeszentrale für politische Bildung, Stichwort: ], abgefragt 3.2.2024.
- ↑ [ Grundlagen Statistik, Stichwort: ], abgefragt 3.2.2024.
- ↑ Aus ], abgefragt 3.2.2024.
- ↑ Aus ], abgefragt 3.2.2024.
- ↑ [ Microsoft Support, Stichwort: ], abgefragt 3.2.2024.
- ↑
- ↑ [ Wikipedia, Stichwort: ], abgefragt 3.2.2024.
- ↑ [ Gablers Wirtschaftslexikon, Stichwort: ], abgefragt 3.2.2024.
- ↑ [ Bundeszentrale für politische Bildung, Stichwort: ], abgefragt 3.2.2024.
- ↑ [ Grundlagen Statistik, Stichwort: ], abgefragt 3.2.2024.
- ↑ Aus ], abgefragt 3.2.2024.
- ↑ Aus ], abgefragt 3.2.2024.
- ↑ [ Microsoft Support, Stichwort: ], abgefragt 3.2.2024.
- ↑
- ↑ [ Wikipedia, Stichwort: ], abgefragt 3.2.2024.
- ↑ [ Gablers Wirtschaftslexikon, Stichwort: ], abgefragt 3.2.2024.
- ↑ [ Bundeszentrale für politische Bildung, Stichwort: ], abgefragt 3.2.2024.
- ↑ [ Grundlagen Statistik, Stichwort: ], abgefragt 3.2.2024.
- ↑ Aus ], abgefragt 3.2.2024.
- ↑ Aus ], abgefragt 3.2.2024.
- ↑ [ Microsoft Support, Stichwort: ], abgefragt 3.2.2024.
- ↑
- ↑ [ Wikipedia, Stichwort: ], abgefragt 3.2.2024.
- ↑ [ Gablers Wirtschaftslexikon, Stichwort: ], abgefragt 3.2.2024.
- ↑ [ Bundeszentrale für politische Bildung, Stichwort: ], abgefragt 3.2.2024.
- ↑ [ Grundlagen Statistik, Stichwort: ], abgefragt 3.2.2024.
[[Kategorie:Mathematischer Begriff]]