Benutzer:Peter Hager/Baustelle/Statistik

Aus Bewertungshilfe
Wechseln zu: Navigation, Suche

Seite aus Benutzer:Peter Hager/Baustelle/Diverse Hinweise#Statistik (31.1.2024)

Diese Seite ist noch in Arbeit

nn vollständig, in Arbeit,<s> Kurzinfo! nn verlinkt, (fehlende Links eintragen), kein Link auf diese Seite <s>* Seite auf Termini eintragen

Begriff (lö)

  • Weiterleitung:
Hauptartikel-> [[]]
  • Synonyme: [[]]

siehe auch-> [[]]

fe 

https://de.wikipedia.org/wiki/Statistik Statistik „ist die Lehre von Methoden zum Umgang mit quantitativen Informationen“ (Daten).[1] Sie ist eine Möglichkeit, „eine systematische Verbindung zwischen Erfahrung (Empirie) und Theorie herzustellen“.[1] Unter Statistik versteht man die Zusammenfassung bestimmter Methoden zur Analyse empirischer Daten. Ein alter Ausdruck für „Statistik“ ist Sammelforschung.

Die Statistik wird als Hilfswissenschaft von allen empirischen Disziplinen und Naturwissenschaften verwendet, wie zum Beispiel der Medizin (Medizinische Statistik), der Psychologie (Psychometrie), der Politologie, der Soziologie, der Wirtschaftswissenschaft (Ökonometrie), der Biologie (Biostatistik), der Chemie (Chemometrie) und der Physik. Die Statistik stellt somit die theoretische Grundlage aller empirischen Forschung dar. Da die Menge an Daten in allen Disziplinen rasant zunimmt, gewinnt auch die Statistik und die aus ihr abgeleitete Analyse dieser Daten an Bedeutung. Andererseits ist die Statistik ein Teilgebiet der reinen Mathematik. Das Ziel der reinen mathematischen Statistik ist das Beweisen allgemeingültiger Aussagen mit den Methoden der reinen Mathematik. Sie bedient sich dabei der Erkenntnisse der mathematischen Grundlagendisziplinen Analysis und lineare Algebra.

https://de.wikipedia.org/wiki/%C3%96konometrie

https://de.wikipedia.org/wiki/Stochastik

Statistik

→ Hauptartikel: Statistik

Statistik ist eine auf der Wahrscheinlichkeitstheorie basierende Methodik zur Analyse quantitativer Daten. Dabei verbindet sie empirische Daten mit theoretischen Modellen. Man kann die Statistik unterteilen in die beschreibende Statistik (deskriptive Statistik) und die beurteilende Statistik (schließende Statistik).[21] In der beschreibenden Statistik sammelt man Daten über Zufallsgrößen, stellt die Verteilung von Häufigkeiten graphisch dar und charakterisiert sie durch Lage- und Streuungsmaße. Die Daten gewinnt man aus einer Stichprobe, die Auskunft über die Verteilung der untersuchten Merkmale in einer Grundgesamtheit geben soll. In der beurteilenden Statistik versucht man, aus den Daten einer Stichprobe Rückschlüsse über die Grundgesamtheit zu ziehen. Man erhält dabei Aussagen, die immer mit einer gewissen Unsicherheit behaftet sind. Diese Unsicherheit wird mit Methoden der Wahrscheinlichkeitsrechnung abgeschätzt. Dieses Schätzen von Wahrscheinlichkeiten und das Testen von Hypothesen sind typische Aufgaben der beurteilenden Statistik.[22]

   Daten, Stichprobe, Grundgesamtheit, Häufigkeit (absolute, relative), Merkmal, Merkmalsausprägung
   Häufigkeitsverteilung, Stabdiagramm, Kreisdiagramm, Histogramm, Stamm-Blatt-Diagramm
   explorative Datenanalyse, Minimum, Quartil, Quantil, Median, Maximum, Boxplot
   arithmetisches Mittel, geometrischer Mittelwert, harmonisches Mittel, gewichtetes Mittel
   Stichprobenvarianz, Stichprobenstandardabweichung, Abweichung, Spannweite
   Hypothesentest, Testen nach Bayes, Schätzen

https://de.wikipedia.org/wiki/Parameter_(Statistik) In der Statistik fassen aggregierende Parameter oder Maßzahlen die wesentlichen Eigenschaften einer Häufigkeitsverteilung, z. B. einer längeren Reihe von Messdaten, oder einer Wahrscheinlichkeitsverteilung zusammen.

  • Lageparameter
  • Streuungsparameter

* Konzentrationsparameter

  • Gestaltmaße bzw. -parameter fe Kap

eigene Der Begriff bezeichnet:

Begriff bedeutet.

[1] [2] [3] [4] [5]

Bedeutung

  • Weiterleitung:
Hauptartikel-> [[]]
  • Synonyme: [[]]

siehe auch-> [[]]

fe 

eigene

[6] [7] [8] [9] [10]

Wichtige Kenngrößen

  • Weiterleitung:
Hauptartikel-> [[]]
  • Synonyme: [[]]

siehe auch-> [[]]

fe 

https://de.wikipedia.org/wiki/Deskriptive_Statistik

Kenngrößen (statistische Kennwerte)

→ Hauptartikel: Parameter (Statistik)

Drei Arten von Kenngrößen sind hauptsächlich von Interesse:

  • Lagemaße: als zentrale Tendenz einer Häufigkeitsverteilung. Aus der Lage der verschiedenen Werte für die zentrale Tendenz zueinander lassen sich Schiefe und Exzess einer Häufigkeitsverteilung bestimmen.
  • Streuungsmaße: für die Variabilität (Streuung oder Dispersion) einer Häufigkeitsverteilung und
  • Zusammenhangsmaße: für den Zusammenhang (auch: Korrelation) zweier Variablen.

Die Wahl der geeigneten Kenngrößen hängt vom Skalen- oder Messniveau der Daten und von der Robustheit der Kenngröße ab.


https://de.wikipedia.org/wiki/Parameter_(Statistik)

eigene

[11] [12] [13] [14] [15]

Ermittlung / Berechnung

fe 

Lageparameter

Hlf (Lage)

  • Weiterleitung: Lageparameter

siehe auch-> Mittelwert, Median, Modalwert

 (zT) ok 

Lageparameter geben Auskunft über die Ausprägung (Lage) einer Variablen. links

  • Zum einen die Mitte dh
  • den Mittelwert
  • den Median
  • den Modalwert
  • zum anderen die Extreme
  • Minimum
  • Maximum und
  • Ausreißer

Ein wichtiger Lageparameter sind die

  • Quantile

Lageparameter (Mittelwert) bestimmen die Ausprägung der Variablen.

Diese Werte berücksichtigen jedoch nur zT die Eintrittswahrscheinlichkeit. Um die Wahrscheinlichkeitsverteilung mitzuberücksichtigen muss man den

Mitte der Datenmenge

Hauptartikel-> Mittelwert, Median, Modalwert

 erg 

Um rechnen zu können müssen Daten konkretisiert werden, dazu orientiert man sich idR an der Mitte. Dazu bieten sich an:

erg Belastbarkeit

Extreme (Min/Max)

  • Weiterleitung: Extremwert, Minimum, Maximum,

 (zT) ok 

Extremwerte sind das

  • Minimum, das ist der kleinste und
  • Maximum, als größter Wert.

Während diese in der Kurvendiskussion durch die erste Ableitung erfolgt, wird in der Unternehmensbewertung der größe oder kleinste Wert der Grundgesamtheit / Stichprobe gesucht (Excel-Funktion: MIN, MAX).

Excel

  • Das Minimum wird in Excel mit der Funktion MIN() berechnet.[16]
  • Das Maximum wird in Excel mit der Funktion MAX() berechnet.[17]

Weblinks

Ausreißer

  • Weiterleitung: Ausreißer

 (zT) ok 

Ausreißer sind Extremwerte, die sich von den anderen Werten der Stichprobe abheben. Sie haben normalerweise beträchtlichen Einfluss auf die Berechnung statistischer Kenngrößen und Modelle (vgl. z.B. Hebeleffekt in der linearen Regression) und sollten in den meisten Fällen entfernt werden.[18]

Die "Erwartung" wird meistens als Streuungsbereich um den Mittelwert / Median herum definiert, z. B. der Quartilsabstand Q75 – Q25. Im Box-Plot werden besonders hohe Ausreißer gesondert dargestellt.[19]

Ursache sind häufig Messfehler. Man behebt sie in dem man sie nicht ansetzt.

Berechnung

Es gibt verschiedene Ausreißertests (zB Ausreißertest nach Grubbs,[20] man kann sie einfach über den Boxplot erkennen: Wenn sie außerhalb der Whisker liegen handelt es sich um Ausreißer. Ausreißer verzerren den Mittelwert und die lineare Regression. wirklich zwei Ereignisse oder Ursache/Wirkung?

Der Median ist robust gegen Ausreißer.

Weblinks

Quantil

  • Weiterleitung: Quantil, Quartil, Perzentil

 (zT) ok 

Ein Quantil ist ein Lagemaß, das in der Wahrscheinlichkeitsverteilung links die Wahrscheinlichkeit [math]p[/math] und rechts die Wahrscheinlichkeit [math]{1-p}[/math] angibt. [21]

Spezielle Quantile sind:

  • Median p = 50%
  • Quartil: p = 25%, 50%, 75%, 100%
  • Perzentil: Wahrscheinlichkeit steigt in Prozentschritten.
Quartil

Quartile teilen die zugrundeliegende Verteilung in vier Viertel.

  • Unteres Quartil: p = 25%, Verwendung als untere Grenze der Probe;
  • Mittleres Quartil: p = 50%, entspricht dem Median;
  • Oberes Quartil: p = 75%, Verwendung als obere Grenze der Probe;

Der Abstand zwischen unterem und oberen Quantil wird als Interquartilsabstand bezeichnet und stellt ein wichtiges Streuungsmaß dar.

Perzentil

Als Perzentile werden die Quantile von 0 , 01 bis 0 , 99 in Schritten von 0,01 bezeichnet. [22] Sie haben besonders Bedeutung für die Bandbreite der Unternehmensbewertung.

Excel Mit der Funktion QUARTIL() lassen sich diese berechnen.[23]

Weblinks

Darstellung (Box-Plot)

  • Weiterleitung: Box-Plot

 erg 

https://de.wikipedia.org/wiki/Box-Plot


https://wirtschaftslexikon.gabler.de/definition/box-plot-53780

http://www.statistics4u.com/fundstat_germ/cc_boxwhisk.html

eigene

Box-Plot; ex Wikimedia, erst. RobSeb

Box-Plots (Schachteldiagramme) enthalten die wichtigsten Parameter einer univariaten Verteilung. Ein Box-Plot besteht aus Rechtecken, die den Interquartilsabstand. Innerhalb dieser Box wird der Median als trennende Linie dargestellt. Zur Rechten und zur Linken der Box sind Linien (whiskers[24]) Dieser kann in Excel nach einem fixen Betrag, oder einem Prozentsatz des Interquartilsabstandes festgelegt werden. In manchen Fällen wird der Mittelwert als +Zeichen dargestellt.[25]

Manchmal werden auch Ausreißer und Extremwerte eingetragen.

Informationen in der Box-Plot:

Excel Eine Anleitung zur Erstellung eines Box-Plots findet sich bei Microsoft-Support, Stichwort Box-Plott, abgefragt 3.2.2024.

Literatur

Weblinks

[26] [27] [28] [29] [30]

mm

  • Weiterleitung:
Hauptartikel-> [[]]
  • Synonyme: [[]]

siehe auch-> [[]]

fe 

eigene

Berechnung[31]

NN[32]

[math] {NN} = \frac{a}{b}[/math] Benutzer:Peter_Hager/Praktische_Hilfen#Mathematik

Variable
= Ergebnis

[math] {NN} [/math] Variable

Excel

  • NN lässt sich in Excel mit der Funktion VAR.P() ermitteln.[33]

Literatur

  • Falkenberg (1975), S. 17;
  • Hackl ua (1982), S. 17;

Weblinks

  • [

NN bei Wikipedia], abgefragt 3.2.2024;

  • [

NN bei Gablers Wirtschaftslexikon], abgefragt 3.2.2024;

  • [

NN bei Bundeszentrale für politische Bildung], abgefragt 3.2.2024;

  • [

NN bei Grundlagen Statistik], abgefragt 3.2.2024;

[34] [35] [36] [37] [38]

Streuungsparameter

Hlf (Str)

  • Weiterleitung: Streuungsparameter, Streuungsmaß
  • Synonyme: Streuungsmaß

siehe auch-> Lageparameter

 (zT) ok 

https://de.wikipedia.org/wiki/Streuungsmaß_(Statistik)

https://wirtschaftslexikon.gabler.de/definition/streuungsmass-45610

http://www.statistics4u.com/fundstat_germ/cc_measvariation.html

https://wirtschaftslexikon.gabler.de/definition/streuung-43301 Statistik

Dispersion, Variabilität; das mehr oder minder weite Entferntsein der Beobachtungswerte eines Merkmals bzw. der Ausprägungen einer Zufallsvariablen voneinander. Die Quantifizierung der Streuung erfolgt durch Streuungsmaße.

eigene Streuungsmaße (Streuungsparameter) geben Auskunft über die Verteilung link? der Werte einer Funktion link oder Stichprobelink . Dabei ist nach dem Bezug zu unterscheiden

  • Interquartilsabstand
  • weiters: Quantilsabstand, mittlere absolute Abweichung vom Median, Median der absoluten Abweichungen vom Median
  • Weitere Streuungsmaße

Berechnung[39]

Excel

  • NN lässt sich in Excel mit der Funktion VAR.P() ermitteln.[40]

Literatur

Weblinks

[41] [42] [43] [44] [45]

Varianz

  • Weiterleitung: Varianz

 (zT) ok 

Die Varianz [46] ([math]\sigma^2[/math]) ist ein statistisches Streuungsmaß. Er ergibt sich aus der quadratischen Abweichung der einzelnen Werte vom Mittelwert.

Bitte beachten Sie bei der Bezeichnung für die Varianz und die Standardabweichung: Sie wird mit s² (bzw s) bezeichnet, wenn sie aus einer Stichprobe berechnet wurde. Wenn sie aus einer Grundgesamtheit berechnet wurde, wird die Standardabweichung durch den griechischen Buchstaben σ (Sigma) dargestellt.[47]

Die Abkürzung [math]{s}[/math] für die Stichprobe für die UBW zutreffender, aber das wird schon für Steuer verwendet. Daher wird [math]\sigma[/math] verwendet, das entspricht der Fachliteratur Unternehmensbewertung, vgl. zB Aschauer / Purtscher (2023), S. XVIII.

Die Varianz ist ein nicht relativiertes Streuungsmaß.[48] Wenn also der Mittelwert in Meter berechnet wird, beträgt die Varianz Quadratmeter. mit wem kann ich das besprechen?

Berechnung[49]

[math]\sigma^2= \frac{1}{n} \sum \limits_{i=1}^n(x_i-\bar{x})^2[/math]

Diese Formel gilt für diskrete Verteilungen, bei stetigen Verteilungen ist die Varianz als Integral der quadaratischen Abweichungen zu ermitteln.[50]

Excel

  • Die Varianz der Grundgesamtheit lässt sich in Excel mit der Funktion VAR.P() ermitteln.[51]
  • Die Varianz der Stichprobe lässt sich in Excel mit der Funktion VAR.S() ermitteln.[52]

NN[53]

Literatur

  • Falkenberg (1975), S. 297 f;
  • Hackl ua (1982), S. 17;

Weblinks

[54] [55] [56] [57] [58]

Standardabweichung

  • Weiterleitung: Standardabweichung

 (zT) ok 

Die Standardabweichung ist die Wurzel der Varianz. Sie stellt das gebräuchlichste Streuungsmaß dar, da sie anschaulicher als die Varianz ist. Sie hat dieselbe Größenordnung wie die beobachteten Werte.[59]

Berechnung

[math]\sigma = \sqrt{\sigma^2}[/math]

Excel

  • Die Standardabweichung der Grundgesamtheit lässt sich in Excel direkt mit der Funktion STABW.N() ermitteln.[60]
  • Die Standardabweichung der Stichprobe lässt sich in Excel direkt mit der Funktion STABW.S() ermitteln.[61]
  • Die Standardabweichung lässt sich in Excel indirekt als Quadratwurzel der Varianz WURZEL() ermitteln.[62]

Literatur

  • Hackl ua (1982), S. 17;

Weblinks

[63] [64] [65] [66] [67]

Variationskoeffizient

  • Weiterleitung: Variationskoeffizient

 (zT) ok 

Der Variationskoeffizient ist das Verhältnis zwischen Standardabweichung und (arithmetisches) Mittelwert. Er wird häufig in Prozent angegeben.

Berechnung

[math]v = \frac{\sigma}{\bar{x}} [/math]

Excel

  • Für den Variationskoeffizient gibt es keine eigene Excelfunktion.

Literatur

  • Hackl ua (1982), S. 17;

Weblinks

[68] [69] [70] [71] [72]

Interquartilsabstand

  • Weiterleitung: Interquartilsabstand

siehe auch-> Box-Plot

 (zT) ok 

</s>https://de.wikipedia.org/wiki/Interquartilsabstand_(deskriptive_Statistik) </s>

</s>https://wirtschaftslexikon.gabler.de/definition/mittlerer-quartilsabstand-36941 </s>

</s>http://www.statistics4u.com/fundstat_germ/cc_iqr.html </s>

eigene Der Interquartilsabstand stellt den Abstand zwischen dem ersten und dritten Quartil dar. In seiner Mitte befindet sich der Median. Er enthält genau 50% der Datensätze.[73]

Berechnung[74]

Literatur

Weblinks

[75] [76] [77] [78] [79]

Spannweite

  • Weiterleitung: Spannweite
Hauptartikel-> [[]]
  • Synonyme: [[]]

siehe auch-> [[]]

fe 

https://de.wikipedia.org/wiki/Spannweite_(Statistik) Die Spannweite (englisch range) ist ein Streuungsmaß in der Statistik.

Definition

Die Spannweite berechnet sich als Abweichung zwischen dem größten und dem kleinsten Messwert:[80]

[math] R = x_\mathrm{max} - x_\mathrm{min} [/math]

Die Spannweite ist nicht robust gegenüber Ausreißern, sie hängt nur von den Extremwerten ab und verliert bei zunehmendem Stichprobenumfang an Informationsgehalt. Sie wird daher vor allem bei kleinen Stichprobenumfängen genutzt. Sie hat die gleiche Maßeinheit wie die Messwerte selbst. Damit die Differenzbildung sinnvoll ist, müssen diese metrisches Skalenniveau haben.

Die Spannweite kann in verschiedener Art und Weise genutzt werden, um Standardabweichungen zu schätzen und obere Grenzen für Standardabweichungen anzugeben.

https://wirtschaftslexikon.gabler.de/definition/spannweite-43726 bei einer Gesamtheit, bei der ein quantitatives Merkmal interessiert, die Differenz aus größter und kleinster Ausprägung. Die Spannweite wird in der statistischen Qualitätskontrolle (Qualitätssicherung) als einfaches Streuungsmaß verwendet, ist aber stark abhängig von der Güte der Daten (Ausreißer).

eigene

Berechnung[81]

NN[82]

[math] {NN} = \frac{a}{b}[/math] Benutzer:Peter_Hager/Praktische_Hilfen#Mathematik

Variable
= Ergebnis

[math] {NN} [/math] Variable

Excel

  • NN lässt sich in Excel mit der Funktion VAR.P() ermitteln.[83]

Literatur

  • Falkenberg (1975), S. 17;
  • Hackl ua (1982), S. 17;

Weblinks

  • [

NN bei Wikipedia], abgefragt 3.2.2024;

  • [

NN bei Gablers Wirtschaftslexikon], abgefragt 3.2.2024;

  • [

NN bei Bundeszentrale für politische Bildung], abgefragt 3.2.2024;

  • [

NN bei Grundlagen Statistik], abgefragt 3.2.2024;

[84] [85] [86] [87] [88]

mm

  • Weiterleitung:
Hauptartikel-> [[]]
  • Synonyme: [[]]

siehe auch-> [[]]

fe 

eigene

Berechnung[89]

NN[90]

[math] {NN} = \frac{a}{b}[/math] Benutzer:Peter_Hager/Praktische_Hilfen#Mathematik

Variable
= Ergebnis

[math] {NN} [/math] Variable

Excel

  • NN lässt sich in Excel mit der Funktion VAR.P() ermitteln.[91]

Literatur

  • Falkenberg (1975), S. 17;
  • Hackl ua (1982), S. 17;

Weblinks

  • [

NN bei Wikipedia], abgefragt 3.2.2024;

  • [

NN bei Gablers Wirtschaftslexikon], abgefragt 3.2.2024;

  • [

NN bei Bundeszentrale für politische Bildung], abgefragt 3.2.2024;

  • [

NN bei Grundlagen Statistik], abgefragt 3.2.2024;

[92] [93] [94] [95] [96]

Erwartungswert

  • Weiterleitung:
Hauptartikel-> Erwartungswert
  • Synonyme: [[]]

siehe auch-> [[]]

fe 

Kruschwitz ua 58 Der Erwartungswert spiegelt den durchschnittlichen Wert der Ausprägungen einer Zufallsgröße wider. Das ist typischerweise jene Realisation, die mit der größten Wahrscheinlichkeit l).Uftritt. Daher pflegt man man bei der Unternehmensbewertung davon auszugehen, dass die zukünftige Rendite ihrem Erwartungswert entspricht.

Wie aber lässt sich dieser Erwartungswert bestimmen? __ Solange wir nur eine Stiehpf;;-b~ aus alle;-R.~ili~ationen der VerteÜwg'fs. kennen, bleibt uns der Erwartungswert grundsätzlich unbekannt. Wir können ihn bestenfalls schätzen. Hier hilft nun die Annahme weiter, dass die Renditen des zu bewertenden Unternehmens stationär sind. Unter dieser Bedingung können wir nämlich das arithmetische Mittel der beobachteten Renditen verwenden und mit einiger Gewissheit darauf vertrauen, dass dieses arithmetische Mittel einen brauchbaren Anhaltspunkt für den Erwartungswert der Renditen darstellt.79

Erwartungswert Der Erwartungswert ist die Summe aller möglichen Umweltzustände multipliziert mit deren Eintrittswahrscheinlichkeit. Er bezeichnet jenen Wert der bei einer großen Anzahl von Versuchen ergibt.[1] Erwartungswert bei Wikipedia, abgefragt am 12.6.2017, 'nicht mehr aktuell

https://de.wikipedia.org/wiki/Erwartungswert Der Erwartungswert (selten und doppeldeutig Mittelwert) ist ein Grundbegriff der Stochastik. Der Erwartungswert ist eine Kennzahl einer Zufallsvariablen. Bei einer engeren Definition ist der Erwartungswert einer Zufallsvariablen eine reelle Zahl und damit endlich; bei einer weiteren Definition sind für den Erwartungswert einer Zufallsvariablen auch die Werte ± ∞ {\displaystyle \pm \infty } zugelassen. Es gibt Zufallsvariablen, für die kein Erwartungswert definiert ist.

Hat eine Zufallsvariable einen endlichen Erwartungswert, so wird dieser häufig mit μ {\displaystyle \mu } abgekürzt; er beschreibt dann die Zahl, die die Zufallsvariable im Mittel annimmt. Er ergibt sich zum Beispiel bei unbegrenzter Wiederholung des zugrunde liegenden Experiments als Durchschnitt der Ergebnisse. Das Gesetz der großen Zahlen beschreibt, in welcher Form die Durchschnitte der Ergebnisse bei wachsender Anzahl der Experimente gegen den endlichen Erwartungswert streben, oder anders gesagt, wie die Stichprobenmittelwerte bei wachsendem Stichprobenumfang gegen den Erwartungswert konvergieren.

Ein endlicher Erwartungswert bestimmt die Lokalisation (Lage) der Verteilung der Zufallsvariablen und ist vergleichbar mit dem empirischen arithmetischen Mittel einer Häufigkeitsverteilung in der deskriptiven Statistik, jedoch mit einem wichtigen Unterschied: Der Erwartungswert ist der „wahre“ Mittelwert einer Zufallsvariablen (Mittelwert der Grundgesamtheit), während sich das arithmetische Mittel in der Regel nur auf eine Stichprobe von Werten bezieht (Stichprobenmittel). Eine neue Stichprobe wird einen unterschiedlichen arithmetischen Mittelwert liefern, jedoch bleibt der Erwartungswert μ {\displaystyle \mu } immer gleich. Siehe auch: Lageparameter (deskriptive Statistik)

Der Erwartungswert berechnet sich als nach der Wahrscheinlichkeit gewichtetes Mittel der Werte, die die Zufallsvariable annimmt. Er muss selbst jedoch nicht einer dieser Werte sein.

Weil der Erwartungswert einer Zufallsvariablen nur von deren Wahrscheinlichkeitsverteilung abhängt, wird auch vom Erwartungswert einer Wahrscheinlichkeitsverteilung gesprochen, ohne Bezug auf eine Zufallsvariable. Der endliche Erwartungswert einer Zufallsvariablen kann als Schwerpunkt der Wahrscheinlichkeitsmasse betrachtet werden und wird daher als ihr erstes Moment bezeichnet.


eigene

Berechnung[97]

NN[98]

[math] {NN} = \frac{a}{b}[/math] Benutzer:Peter_Hager/Praktische_Hilfen#Mathematik

Variable
= Ergebnis

[math] {NN} [/math] Variable

Excel

  • NN lässt sich in Excel mit der Funktion VAR.P() ermitteln.[99]

Literatur

  • Falkenberg (1975), S. 17;
  • Hackl ua (1982), S. 17;

Weblinks

  • [

NN bei Wikipedia], abgefragt 3.2.2024;

  • [

NN bei Gablers Wirtschaftslexikon], abgefragt 3.2.2024;

  • [

NN bei Bundeszentrale für politische Bildung], abgefragt 3.2.2024;

  • [

NN bei Grundlagen Statistik], abgefragt 3.2.2024;

[100] [101] [102] [103] [104]

Gestaltparameter

  • Weiterleitung: Gestaltparameter
Hauptartikel-> [[]]
  • Synonyme: [[]]

siehe auch-> [[]]

fe 

eigene

Berechnung[105]

NN[106]

[math] {NN} = \frac{a}{b}[/math] Benutzer:Peter_Hager/Praktische_Hilfen#Mathematik

Variable
= Ergebnis

[math] {NN} [/math] Variable

Excel

  • NN lässt sich in Excel mit der Funktion VAR.P() ermitteln.[107]

Literatur

  • Falkenberg (1975), S. 17;
  • Hackl ua (1982), S. 17;

Weblinks https://de.wikipedia.org/wiki/Erwartungswert

  • [

NN bei Wikipedia], abgefragt 3.2.2024;

  • [

NN bei Gablers Wirtschaftslexikon], abgefragt 3.2.2024;

  • [

NN bei Bundeszentrale für politische Bildung], abgefragt 3.2.2024;

  • [

NN bei Grundlagen Statistik], abgefragt 3.2.2024;

[108] [109] [110] [111] [112]

mm

  • Weiterleitung:
Hauptartikel-> [[]]
  • Synonyme: [[]]

siehe auch-> [[]]

fe 

eigene

Berechnung[113]

NN[114]

[math] {NN} = \frac{a}{b}[/math] Benutzer:Peter_Hager/Praktische_Hilfen#Mathematik

Variable
= Ergebnis

[math] {NN} [/math] Variable

Excel

  • NN lässt sich in Excel mit der Funktion VAR.P() ermitteln.[115]

Literatur

  • Falkenberg (1975), S. 17;
  • Hackl ua (1982), S. 17;

Weblinks https://de.wikipedia.org/wiki/Erwartungswert

  • [

NN bei Wikipedia], abgefragt 3.2.2024;

  • [

NN bei Gablers Wirtschaftslexikon], abgefragt 3.2.2024;

  • [

NN bei Bundeszentrale für politische Bildung], abgefragt 3.2.2024;

  • [

NN bei Grundlagen Statistik], abgefragt 3.2.2024;

[116] [117] [118] [119] [120]

NN

  • Weiterleitung:
Hauptartikel-> [[]]
  • Synonyme: [[]]

siehe auch-> [[]]

fe 

eigene

Berechnung[121]

NN[122]

[math] {NN} = \frac{a}{b}[/math] Benutzer:Peter_Hager/Praktische_Hilfen#Mathematik

Variable
= Ergebnis

[math] {NN} [/math] Variable

Excel

  • NN lässt sich in Excel mit der Funktion VAR.P() ermitteln.[123]

Literatur

  • Falkenberg (1975), S. 17;
  • Hackl ua (1982), S. 17;

Weblinks https://de.wikipedia.org/wiki/Erwartungswert

  • [

NN bei Wikipedia], abgefragt 3.2.2024;

  • [

NN bei Gablers Wirtschaftslexikon], abgefragt 3.2.2024;

  • [

NN bei Bundeszentrale für politische Bildung], abgefragt 3.2.2024;

  • [

NN bei Grundlagen Statistik], abgefragt 3.2.2024;

[124] [125] [126] [127] [128]

Literatur

Gesetz

Erlässe

Fachgutachten

Fachliteratur

" *)mwN ausgeblendet finden sich weitere Literaturangaben

* Aschauer / Purtscher (2023), S. ;

  • Bachl (2018), S. ;
  • Drukarczyk / Schüler (2016), S. ;
  • Fleischer / Hüttemann (2015), S. ;
  • Ihlau / Duscha (2019), S. ;
  • Mandl / Rabel (1997), S. ;
  • WP-Handbuch II (2014), Rz. A ;
  • WPH-Edition (2018), Rz. A ;
  • Kruschwitz ua (2009), S. 56 ff;

Zu Lit Kruschwitz ua (2009): Kruschwitz ua, "Unternehmensbewertung für die Praxis", Schäffer-Poeschel 2009;


Judikatur

Unterlage(n)

Sortiert nach Dateiname

* Hager: Auffrischung mathematischer Grundkenntnisse, Basisseminar BFA, Datei:Mathematik-Auffrischung.pdf, Stand August 2023;

Folien

siehe auch -> Liste der verwendeten Literatur ev, Liste der verwendeten Abkürzungen und Symbole, Liste der verwendeten Formeln

Weblinks

  • [

NN bei Wikipedia], abgefragt 3.2.2024;

  • [

NN bei Gablers Wirtschaftslexikon], abgefragt 3.2.2024;

  • [

NN bei Bundeszentrale für politische Bildung], abgefragt 3.2.2024;

  • [

NN bei Grundlagen Statistik], abgefragt 3.2.2024;

Einzelnachweise

  1. [ Wikipedia, Stichwort: ], abgefragt 3.2.2024.
  2. [ Gablers Wirtschaftslexikon, Stichwort: ], abgefragt 3.2.2024.
  3. [ Bundeszentrale für politische Bildung, Stichwort: ], abgefragt 3.2.2024.
  4. [ Grundlagen Statistik, Stichwort: ], abgefragt 3.2.2024.
  5. [ Wikipedia, Stichwort: ], abgefragt 3.2.2024.
  6. [ Gablers Wirtschaftslexikon, Stichwort: ], abgefragt 3.2.2024.
  7. [ Bundeszentrale für politische Bildung, Stichwort: ], abgefragt 3.2.2024.
  8. [ Grundlagen Statistik, Stichwort: ], abgefragt 3.2.2024.
  9. [ Wikipedia, Stichwort: ], abgefragt 3.2.2024.
  10. [ Gablers Wirtschaftslexikon, Stichwort: ], abgefragt 3.2.2024.
  11. [ Bundeszentrale für politische Bildung, Stichwort: ], abgefragt 3.2.2024.
  12. [ Grundlagen Statistik, Stichwort: ], abgefragt 3.2.2024.
  13. Vgl. Microsoft Support, Stichwort Min, abgefragt 3.2.2024.
  14. Vgl. Microsoft Support, Stichwort Mittelwert, abgefragt 3.2.2024.
  15. Grundlagen Statistik, Stichwort: Ausreißer, abgefragt 3.2.2024.
  16. Wikipedia, Stichwort: Ausreißer, abgefragt 3.2.2024.
  17. Diesen kann man in Excel erstellen, vgl. XLSTAT, Stichwort: Grubbs Test zum Aufspüren von Ausreißern in Excel, abgefragt 3.2.2024.
  18. Wikipedia, Stichwort: Empirisches Quantil, abgefragt 3.2.2024.
  19. Wikipedia, Stichwort: Empirisches Quantil, abgefragt 3.2.2024.
  20. Vgl. Microsoft Support, Stichwort Quartille, abgefragt 3.2.2024.
  21. Engl. für "Schnurhaare".
  22. Grundlagen Statistik, Stichwort: Box-Plots, abgefragt 3.2.2024.
  23. [ Wikipedia, Stichwort: ], abgefragt 3.2.2024.
  24. [ Gablers Wirtschaftslexikon, Stichwort: ], abgefragt 3.2.2024.
  25. [ Bundeszentrale für politische Bildung, Stichwort: ], abgefragt 3.2.2024.
  26. [ Grundlagen Statistik, Stichwort: ], abgefragt 3.2.2024.
  27. Aus ], abgefragt 3.2.2024.
  28. Aus ], abgefragt 3.2.2024.
  29. [ Microsoft Support, Stichwort: ], abgefragt 3.2.2024.
  30. [ Wikipedia, Stichwort: ], abgefragt 3.2.2024.
  31. [ Gablers Wirtschaftslexikon, Stichwort: ], abgefragt 3.2.2024.
  32. [ Bundeszentrale für politische Bildung, Stichwort: ], abgefragt 3.2.2024.
  33. [ Grundlagen Statistik, Stichwort: ], abgefragt 3.2.2024.
  34. Aus ], abgefragt 3.2.2024.
  35. [ Microsoft Support, Stichwort: ], abgefragt 3.2.2024.
  36. [ Wikipedia, Stichwort: ], abgefragt 3.2.2024.
  37. [ Gablers Wirtschaftslexikon, Stichwort: ], abgefragt 3.2.2024.
  38. [ Bundeszentrale für politische Bildung, Stichwort: ], abgefragt 3.2.2024.
  39. [ Grundlagen Statistik, Stichwort: ], abgefragt 3.2.2024.
  40. Vom lat. variantia = "Verschiedenheit" bzw. variare "[ver]ändern, verschieden sein"; vgl. Wikipedia, Stichwort: Varianz, abgefragt 3.2.2024.
  41. Grundlagen Statistik, Stichwort: Varianz, abgefragt 3.2.2024.
  42. Gablers Wirtschaftslexikon, Stichwort: Varianz, abgefragt 3.2.2024.
  43. Aus Hackl ua (1982), S. 17.
  44. Vgl. Formel in Falkenberg (1975), S. 297.
  45. Microsoft Support, Stichwort: Var.p, abgefragt 3.2.2024.
  46. Microsoft Support, Stichwort: Var.s, abgefragt 3.2.2024.
  47. Aus ], abgefragt 3.2.2024.
  48. [ Wikipedia, Stichwort: ], abgefragt 3.2.2024.
  49. [ Gablers Wirtschaftslexikon, Stichwort: ], abgefragt 3.2.2024.
  50. [ Bundeszentrale für politische Bildung, Stichwort: ], abgefragt 3.2.2024.
  51. [ Grundlagen Statistik, Stichwort: ], abgefragt 3.2.2024.
  52. Wikipedia, Stichwort: Empirische Varianz, abgefragt 3.2.2024.
  53. Microsoft Support, Stichwort: Stabw.n, abgefragt 3.2.2024.
  54. Microsoft Support, Stichwort: Stabw.s, abgefragt 3.2.2024.
  55. Microsoft Support, Stichwort: Wurzel, abgefragt 3.2.2024.
  56. [ Wikipedia, Stichwort: ], abgefragt 3.2.2024.
  57. [ Gablers Wirtschaftslexikon, Stichwort: ], abgefragt 3.2.2024.
  58. [ Bundeszentrale für politische Bildung, Stichwort: ], abgefragt 3.2.2024.
  59. [ Grundlagen Statistik, Stichwort: ], abgefragt 3.2.2024.
  60. [ Wikipedia, Stichwort: ], abgefragt 3.2.2024.
  61. [ Gablers Wirtschaftslexikon, Stichwort: ], abgefragt 3.2.2024.
  62. [ Bundeszentrale für politische Bildung, Stichwort: ], abgefragt 3.2.2024.
  63. [ Grundlagen Statistik, Stichwort: ], abgefragt 3.2.2024.
  64. Grundlagen Statistik, Stichwort: Interquartilsabstand, abgefragt 3.2.2024.
  65. Aus ], abgefragt 3.2.2024.
  66. [ Wikipedia, Stichwort: ], abgefragt 3.2.2024.
  67. [ Gablers Wirtschaftslexikon, Stichwort: ], abgefragt 3.2.2024.
  68. [ Bundeszentrale für politische Bildung, Stichwort: ], abgefragt 3.2.2024.
  69. [ Grundlagen Statistik, Stichwort: ], abgefragt 3.2.2024.
  70. Lothar Sachs, Jürgen Hedderich: Angewandte Statistik: Methodensammlung mit R. 8., überarb. und erg. Auflage. Springer Spektrum, Berlin/ Heidelberg 2018, ISBN 978-3-662-56657-2, S. 83
  71. Aus ], abgefragt 3.2.2024.
  72. Aus ], abgefragt 3.2.2024.
  73. [ Microsoft Support, Stichwort: ], abgefragt 3.2.2024.
  74. [ Wikipedia, Stichwort: ], abgefragt 3.2.2024.
  75. [ Gablers Wirtschaftslexikon, Stichwort: ], abgefragt 3.2.2024.
  76. [ Bundeszentrale für politische Bildung, Stichwort: ], abgefragt 3.2.2024.
  77. [ Grundlagen Statistik, Stichwort: ], abgefragt 3.2.2024.
  78. Aus ], abgefragt 3.2.2024.
  79. Aus ], abgefragt 3.2.2024.
  80. [ Microsoft Support, Stichwort: ], abgefragt 3.2.2024.
  81. [ Wikipedia, Stichwort: ], abgefragt 3.2.2024.
  82. [ Gablers Wirtschaftslexikon, Stichwort: ], abgefragt 3.2.2024.
  83. [ Bundeszentrale für politische Bildung, Stichwort: ], abgefragt 3.2.2024.
  84. [ Grundlagen Statistik, Stichwort: ], abgefragt 3.2.2024.
  85. Aus ], abgefragt 3.2.2024.
  86. Aus ], abgefragt 3.2.2024.
  87. [ Microsoft Support, Stichwort: ], abgefragt 3.2.2024.
  88. [ Wikipedia, Stichwort: ], abgefragt 3.2.2024.
  89. [ Gablers Wirtschaftslexikon, Stichwort: ], abgefragt 3.2.2024.
  90. [ Bundeszentrale für politische Bildung, Stichwort: ], abgefragt 3.2.2024.
  91. [ Grundlagen Statistik, Stichwort: ], abgefragt 3.2.2024.
  92. Aus ], abgefragt 3.2.2024.
  93. Aus ], abgefragt 3.2.2024.
  94. [ Microsoft Support, Stichwort: ], abgefragt 3.2.2024.
  95. [ Wikipedia, Stichwort: ], abgefragt 3.2.2024.
  96. [ Gablers Wirtschaftslexikon, Stichwort: ], abgefragt 3.2.2024.
  97. [ Bundeszentrale für politische Bildung, Stichwort: ], abgefragt 3.2.2024.
  98. [ Grundlagen Statistik, Stichwort: ], abgefragt 3.2.2024.
  99. Aus ], abgefragt 3.2.2024.
  100. Aus ], abgefragt 3.2.2024.
  101. [ Microsoft Support, Stichwort: ], abgefragt 3.2.2024.
  102. [ Wikipedia, Stichwort: ], abgefragt 3.2.2024.
  103. [ Gablers Wirtschaftslexikon, Stichwort: ], abgefragt 3.2.2024.
  104. [ Bundeszentrale für politische Bildung, Stichwort: ], abgefragt 3.2.2024.
  105. [ Grundlagen Statistik, Stichwort: ], abgefragt 3.2.2024.
  106. Aus ], abgefragt 3.2.2024.
  107. Aus ], abgefragt 3.2.2024.
  108. [ Microsoft Support, Stichwort: ], abgefragt 3.2.2024.
  109. [ Wikipedia, Stichwort: ], abgefragt 3.2.2024.
  110. [ Gablers Wirtschaftslexikon, Stichwort: ], abgefragt 3.2.2024.
  111. [ Bundeszentrale für politische Bildung, Stichwort: ], abgefragt 3.2.2024.
  112. [ Grundlagen Statistik, Stichwort: ], abgefragt 3.2.2024.

[[Kategorie:Mathematischer Begriff]]