Benutzer:Peter Hager/Baustelle/Korrelation

Aus Bewertungshilfe
Wechseln zu: Navigation, Suche

Seite aus Benutzer:Peter Hager/Baustelle/Diverse Hinweise#Statistik (31.1.2024)

Kurzinfo!

Diese Seite stellt die für die Unternehmensbewertung wichtigen Aspekte des Themas dar, erhebt aber keinen Anspruch auf Vollständigkeit.

nn verlinkt, (fehlende Links eintragen), kein Link auf diese Seite

Begriff (lö)

 (zT) ok 

Eine Korrelation[1] bezeihnet in der Statistik Bezeichnung einen Zusammenhang zweier quantitativer Merkmale bzw. Zufallsvariablen. [2]

Im Gegensatz zur Proportionalität ist die Korrelation nur ein statistischer Zusammenhang. [3]

Korrelationen

  • liegen zwischen Null (=kein Zusammenhang) bis Eins (=starker Zusammenhang);
  • sind größer Null, wenn eine positive Korrelation (wenn mehr, dann mehr) vorliegt.
zB: Mehr Kühe, mehr Milch
  • sind kleiner Null, wenn eine negative Korrelation (wenn mehr, dann weniger) vorliegt.
zB: je weiter man fährt umso weniger Treibstoff ist im Tank. besseres Beispiel suchen.

siehe auch-> Kovarianz, Zusammenhangsmaß

Bedeutung

siehe auch-> Portfoliotheorie, Capital Asset Pricing Model beide ev lö

 (zT) ok 

Die Korrelation ist von erheblicher Bedeutung bei Kapitalanlagen (Finanzanlagen). Es gilt: Das Gesamtrisiko des gesamten Portfolios ist umso geringer, je geringer die einzelnen Anlagen (Assets) miteinander korrelieren.[4]

Beispielsweise korrelieren die Risiken von Aktien und Anleihen weniger miteinander als Aktien untereinander, weshalb eine Mischung in einem Portfolio von Vorteil ist.

Reduktion der Korrelation des Gesamtportfolios im Verhältnis zu seinen Einzelanlagen verbessert nach der Portfoliotheorie (Harry Markowitz, 1952) das Rendite-Risiko-Verhältnis. Auf langfristiger Basis wird damit prinzipiell eine höhere Rendite bei geringerem Risiko erzielt.[5]

Die Korrelation des Risikos einer einzelnen Aktie zum Portfolio findet ausdruck im Beta-Faktors des Capital Asset Pricing Models (CAPM).

Korrelationskoeffizient

Hlf

  • Weiterleitung: Korrelationskoeffizient
Hauptartikel-> [[]]
  • Synonyme: [[]]

siehe auch-> [[]]

fe 

https://de.wikipedia.org/wiki/Korrelationskoeffizient_nach_Bravais-Pearson

https://wirtschaftslexikon.gabler.de/definition/korrelation-40362

https://wirtschaftslexikon.gabler.de/definition/korrelationskoeffizient-39501 https://en.wikipedia.org/wiki/Correlation_coefficient


eigene Ein Korrelationskoeffizient ist ein numerisches Maß für eine Art linearer Korrelation, also eine statistische Beziehung (dh die Korrelation) zwischen zwei Variablen. ev lö Die Variablen können zwei Spalten eines gegebenen Beobachtungsdatensatzes (oft als Stichprobe bezeichnet) oder zwei Komponenten einer multivariaten Zufallsvariablen mit einer bekannten Verteilung sein. [6]


Korrelationskoeffizienten dienen der Messung der Korrelation zweier Merkmale. ev besser Variablen.

Es gibt mehrere Arten von Korrelationskoeffizienten, jede mit eigener Definition und eigenem Anwendungsbereich und eigenen Eigenschaften. Sie alle nehmen Werte im Bereich von −1 bis +1 an, wobei ±1 die stärkste mögliche Korrelation und 0 keine Korrelation anzeigt.[2] Als Analyseinstrumente weisen Korrelationskoeffizienten bestimmte Probleme auf, darunter die Neigung einiger Typen, durch Ausreißer verzerrt zu werden, und die Möglichkeit, fälschlicherweise verwendet zu werden, um auf eine kausale Beziehung zwischen den Variablen zu schließen (weitere Informationen finden Sie unter Korrelation impliziert keine Kausalität). Die unterschiedlichen Arten weisen unterschiedliche Stärken und Schwächen auf.[7]

Es gibt verschiedene Maße für den Korrelationsgrad von Daten. Diese sind von der Art der Daten abhängig, vor allem davon, ob es sich bei den Daten um Messwerte, Ordinal- oder Kategoriedaten handelt. Welchen Korrelationskoeffizient man konkret verwendet, hängt von der Art der Daten ab.



Berechnung[8]

NN[9]

[math] {NN} = \frac{a}{b}[/math] Benutzer:Peter_Hager/Praktische_Hilfen#Mathematik

Variable
= Ergebnis

[math] {NN} [/math] Variable

Excel

  • NN lässt sich in Excel mit der Funktion VAR.P() ermitteln.[10]

Literatur

Weblinks https://de.wikipedia.org/wiki/Korrelationskoeffizient_nach_Bravais-Pearson

https://en.wikipedia.org/wiki/Correlation_coefficient

https://wirtschaftslexikon.gabler.de/definition/korrelation-40362 https://wirtschaftslexikon.gabler.de/definition/korrelationskoeffizient-39501

  • [

NN bei Wikipedia], abgefragt 28.7.2024;

  • [

NN bei Wiki-en], abgefragt 28.7.2024;

  • [

NN bei Gablers Wirtschaftslexikon], abgefragt 28.7.2024;

  • [

NN bei Bundeszentrale für politische Bildung], abgefragt 28.7.2024;

  • [

NN bei Grundlagen Statistik], abgefragt 28.7.2024;

[11] [12] [13] [14] [15] [16]

mm

  • Weiterleitung:
Hauptartikel-> [[]]
  • Synonyme: [[]]

siehe auch-> [[]]

fe 

eigene

Berechnung[17]

NN[18]

[math] {NN} = \frac{a}{b}[/math] Benutzer:Peter_Hager/Praktische_Hilfen#Mathematik

Variable
= Ergebnis

[math] {NN} [/math] Variable

Excel

  • NN lässt sich in Excel mit der Funktion VAR.P() ermitteln.[19]

Literatur

Weblinks

  • [

NN bei Wikipedia], abgefragt 28.7.2024;

  • [

NN bei Gablers Wirtschaftslexikon], abgefragt 28.7.2024;

  • [

NN bei Bundeszentrale für politische Bildung], abgefragt 28.7.2024;

  • [

NN bei Grundlagen Statistik], abgefragt 28.7.2024;

[20] [21] [22] [23] [24]

NN

  • Weiterleitung:
Hauptartikel-> [[]]
  • Synonyme: [[]]

siehe auch-> [[]]

fe 

eigene

Literatur

Weblinks

  • [

NN bei Wikipedia], abgefragt 28.7.2024;

  • [

NN bei Gablers Wirtschaftslexikon], abgefragt 28.7.2024;

  • [

NN bei Bundeszentrale für politische Bildung], abgefragt 28.7.2024;

  • [

NN bei Grundlagen Statistik], abgefragt 28.7.2024;

[25] [26] [27] [28] [29]

Literatur

Fachliteratur

  • Hackl ua (1982), S. 83 f;

siehe auch -> Liste der verwendeten Literatur, ev Liste der verwendeten Abkürzungen und Symbole, Liste der verwendeten Formeln

Weblinks

https://de.wikipedia.org/wiki/Korrelation https://de.wikipedia.org/wiki/Korrelationskoeffizient_nach_Bravais-Pearson ev lö

https://wirtschaftslexikon.gabler.de/definition/korrelation-40362 https://wirtschaftslexikon.gabler.de/definition/korrelationskoeffizient-39501

  • [

NN bei Wikipedia], abgefragt 28.7.2024;

  • [

NN bei Gablers Wirtschaftslexikon], abgefragt 28.7.2024;

  • [

NN bei Bundeszentrale für politische Bildung], abgefragt 28.7.2024;

  • [

NN bei Grundlagen Statistik], abgefragt 28.7.2024;

Einzelnachweise

  1. Vom mittellat. "correlatio" für "Wechselbeziehung". Vgl. Wikipedia, Stichwort: Korrelation, abgefragt 28.7.2024.
  2. Gablers Wirtschaftslexikon, Stichwort: Korrelation, abgefragt 28.7.2024.
  3. Wikipedia, Stichwort: Korrelation, abgefragt 28.7.2024.
  4. Wikipedia, Stichwort: Korrelation, abgefragt 28.7.2024.
  5. Wikipedia, Stichwort: Korrelation, abgefragt 28.7.2024.
  6. Wiki-en, Stichwort: Correlation coefficient, abgefragt 28.7.2024.
  7. Vgl. Wiki-en, Stichwort: Correlation coefficient, abgefragt 28.7.2024.
  8. Aus [ Wikipedia, Stichwort: ], abgefragt 28.7.2024.
  9. Aus [ Wikipedia, Stichwort: ], abgefragt 28.7.2024.
  10. [ Microsoft Support, Stichwort: ], abgefragt 28.7.2024.
  11. [ Wikipedia, Stichwort: ], abgefragt 28.7.2024.
  12. [ Wiki-en, Stichwort: ], abgefragt 28.7.2024.
  13. [ Gablers Wirtschaftslexikon, Stichwort: ], abgefragt 28.7.2024.
  14. [ Bundeszentrale für politische Bildung, Stichwort: ], abgefragt 28.7.2024.
  15. [ Grundlagen Statistik, Stichwort: ], abgefragt 28.7.2024.
  16. Aus [ Wikipedia, Stichwort: ], abgefragt 28.7.2024.
  17. Aus [ Wikipedia, Stichwort: ], abgefragt 28.7.2024.
  18. [ Microsoft Support, Stichwort: ], abgefragt 28.7.2024.
  19. [ Wikipedia, Stichwort: ], abgefragt 28.7.2024.
  20. [ Gablers Wirtschaftslexikon, Stichwort: ], abgefragt 28.7.2024.
  21. [ Bundeszentrale für politische Bildung, Stichwort: ], abgefragt 28.7.2024.
  22. [ Grundlagen Statistik, Stichwort: ], abgefragt 28.7.2024.
  23. [ Wikipedia, Stichwort: ], abgefragt 28.7.2024.
  24. [ Gablers Wirtschaftslexikon, Stichwort: ], abgefragt 28.7.2024.
  25. [ Bundeszentrale für politische Bildung, Stichwort: ], abgefragt 28.7.2024.
  26. [ Grundlagen Statistik, Stichwort: ], abgefragt 28.7.2024.

[[Kategorie:Mathematischer Begriff]]